CAULMERT LIMITED

Engineering, Environmental & Planning

Consultancy Services

Adra

FOREMER RHOS STREET SCHOOL, RHOS STREET, RUTHIN LL15 1DY PHASE II GEO-ENVIRONMENTAL REPORT

Prepared by: David Kitching

Caulmert Limited Intec, Parc Menai, Bangor, Gwynedd, LL57 4FG.

Doc ref: 4863-CAU-XX-XX-RP-V-3001

APPROVAL RECORD

Client:	Adra
Site:	Former Rhos Street School, Ruthin
Project Title:	Phase II Geo-Environmental Report
Document Ref:	4863-CAU-XX-XX-RP-O-3001
Report Status:	FIRST ISSUE
Report Status: Project Manager:	FIRST ISSUE David Kitching

Author	Amy Pritchett/David Kitching	Date	November 2021
Reviewer	David Kitching	Date	November 2021
Approved	Alan Jones	Date	November 2021

DISCLAIMER

This report has been prepared by Caulmert Limited with all reasonable skill, care and diligence in accordance with the instruction of the above-named client and within the terms and conditions of the Contract with the Client.

The report is for the sole use of the above named Client and Caulmert Limited shall not be held responsible for any use of the report or its content for any purpose other than that for which it was prepared and provided to the Client.

Caulmert Limited accepts no responsibility of whatever nature to any third parties who may have been made aware of or have acted in the knowledge of the report or its contents.

No part of this document may be copied or reproduced without the prior written approval of Caulmert Limited.

TABLE OF CONTENTS

1	INTRO	DUCTION5
	1.1	Details of Commission5
	1.2	Limitations of this Study5
	1.3	Objectives of Report5
	1.4	Scope of Report
	1.5	Previous Investigations
2	PROPC	OSED DEVELOPMENT7
3	Prelim	inary Investigation
	3.1	Site Location and Description8
	3.2	Site Walkover Survey9
	3.3	Site History
	3.4	Geology11
	3.5	Mining
	3.6	Hydrogeology & Hydrology12
	3.7	Ground Gas12
4	PRELIN	/INARY RISK ASSESSMENT13
	4.1	Qualitative Risk Assessment
5	GROUI	ND INVESTIGATION
	5.1	Previous Reports
	5.2	Current Ground Investigation16
	5.3	Geotechnical Laboratory Testing16
	5.4	Chemical Laboratory Testing17
6	GROUI	ND CONDITIONS
	6.1	General Stratigraphy
	6.2	Hardstanding18
	6.3	Topsoil
	6.4	Made Ground
	6.5	Kinnerton Sandstone Formation (Residual Soil and Bedrock)
	6.6	Installations
	6.7	Groundwater19
	6.8	Falling Head Tests19
7	CONTA	MINATION ASSESSMENT

	7.1	Methodology for Contamination Risk Assessment	21
	7.2	Human Health - Generic Assessment Criteria (GAC)	22
	7.3	Human Health - Generic Assessment Criteria (GAC)	22
	7.4	Plant Life	24
	7.5	Groundwater	24
	7.6	Ground Gas	25
	7.7	Conceptual Site Model (CSM)	25
8	ENVIRC	INMENTAL ASSESSMENT AND RECOMMENDATIONS	28
	8.1	Human Health	28
	8.2	Plant Life	28
	8.3	Controlled Waters	28
	8.4	Precautions Against Ground Gas	28
	8.5	Water Supply Pipes	29
	8.6	Waste Management	29
	8.7	Outline Remedial Measures	30
9	GEOTEC	CHNICAL ASSESSMENT AND RECOMMENDATIONS	31
	9.1	Geotechnical Categorization of the Proposed Development	31
	9.2	Site Preparation, Earthworks, Groundworks and Landscaping	31
	9.3	Foundations	32
	9.4	Ground Floor Slabs	33
	11.6	Roads and Pavements	33
	9.5	Protection of Buried Concrete	34
10	FURTHE	ER WORK	35
11	REFERE	NCES	36

Appendices

Appendix 1	Figures and Drawings
Appendix 2	'Coke Store' Photographs
Appendix 3	Exploratory Hole Logs
Appendix 4	Falling Head Tests
Appendix 5	Laboratory Testing Results - Geotechnical
Appendix 6	Laboratory Testing Results - Contamination
Appendix 7	GAC Assessment

1 INTRODUCTION

1.1 Details of Commission

- 1.1.1 Caulmert Ltd were commissioned by Atticus Planning on behalf of Adra ("the Client") to undertake a Phase II Geo-environmental appraisal of the former Rhos Street School, Ruthin ("the Site").
- 1.1.2 Caulmert Ltd have previously been commissioned to undertake a Phase 1 Desk Study of the site and this appointment follows the recommendations within that report, which recommended an intrusive investigation to be undertaken at the former school.
- 1.1.3 While a summary of the pertinent points of the Phase 1 Desk Study are included within this report it is recommended that the Phase 1 Desk Study is read in its entirety:
 - Phase 1 Geoenvironmental Desk Study, For the Development of the Former Rhos Street School Ruthin, January 2021 (Report Ref:4863-XX-XX-RP-O-0300.S0.P0.)
- 1.1.4 This report is intended to support a planning application for the proposed development while also providing due diligence information prior to the purchase of the site, along with providing preliminary design information.
- 1.1.5 This report constitutes a geotechnical assessment of the ground conditions and a geo-environmental appraisal of the site including a contamination risk assessment of the Site. This includes the derivation of a provisional Conceptual Site Model in accordance with the staged procedure outlined in *"Model Procedures for the Management of Land Contamination"* (CLR11).

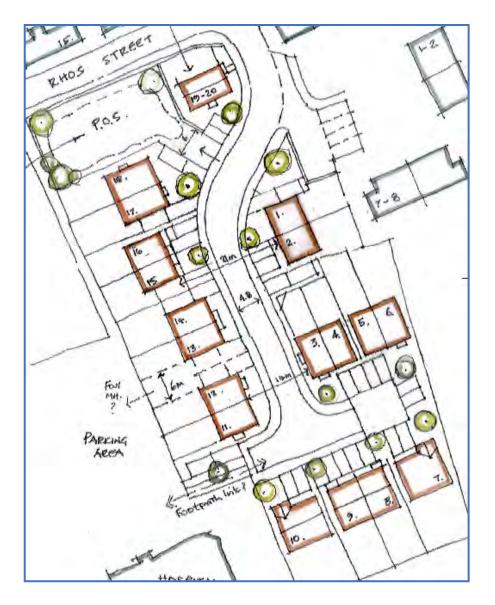
1.2 Limitations of this Study

- 1.2.1 This report is solely for the use of the Client and should not be relied upon by third parties without prior written consent from Caulmert.
- 1.2.2 Information used within this report has been gathered from data sets compiled by third party organisations and purchased on behalf of the Client. The validity and accuracy of this third-party information is outside the control of Caulmert.
- 1.2.3 Interpretation and recommendations contained within this report should not be assumed valid for adjacent areas of land or alternative land uses and are based upon the proposed layout provided to Caulmert at the time of compiling this report.

1.3 Objectives of Report

1.3.1 The objective of this report is to complete an assessment of potential environmental and geotechnical liabilities associated with the proposed redevelopment of the site. while providing preliminary recommendations including geotechnical parameters to allow design of sub-structures.

1.4 Scope of Report


- 1.4.1 The scope of works consists of the following:
 - An assessment of ground conditions given the Site's planned development, its construction phase and the foundation requirements.
 - Identification of any significant environmental or geotechnical constraints to the development of the site.
 - Confirmation of the ground conditions recorded in the desk study report.
 - Investigate potential contamination sources identified in the desk study report.
 - •
 - Updating the preliminary conceptual site model (CSM) identifying potential sources, pathways and receptors of contaminants from the previous Phase I Desk Study and current ground investigation data; and
 - Recommendations for further investigations (as necessary).

1.5 Previous Investigations

1.5.1 Caulmert has not undertaken any previous investigations on the site and is not aware of any investigations carried out by others.

2 PROPOSED DEVELOPMENT

- 2.1.1 A development layout is yet to be finalised; however, it is anticipated the development will comprise of approximately twenty residential detached and semi-detached two storey houses, with associated access roads, private driveways, gardens and public open space.
- 2.1.2 An indicative development layout is presented as Figure 1; an extract is provided below.
- 2.1.3 No construction details, structural loads or site wide elevations have been received to date.It is assumed the building will be of traditional load bearing masonry wall construction.

Figure 1 – Proposed Development Area

3 Preliminary Investigation

3.1 Site Location and Description

- 3.1.1 The Site is located approximately 300m southeast of Ruthin town centre, at National Grid Reference of 312867, 358208.
- 3.1.2 A Site location plan is provided as Figure 2, with red line boundary around the site area.

Figure 2: Location plan of site with red line boundary

- 3.1.3 The Site is roughly rectangular in shape and occupies an area of 0.55Ha. The Site is accessed from Rhos Street to the north of the site.
- 3.1.4 The boundaries of the Site are defined by residential dwellings to the east, Rhos Street and residential dwellings to the north, residential dwellings and hospital car park to the west and Ruthin Community Hospital to the south.
- 3.1.5 The Site area has been developed through the creation of level development platforms within the surrounding sloping ground which has created height differences in the region of c. 0.7m-1.6m. Therefore, there are a number of retaining walls present onsite.
- 3.1.6 A summary of the Site's current uses, and that of its surroundings, from available information is presented in the Phase 1 Report, and summarised below in Table 2.1.

Table 2.1: Site Description

Site Location				
OS Map Reference	312867, 358208			
Site Area	0.55Ha			
Site Setting /	Current Land Use	Unused (former school)		
Description	Surrounding Area North: Rhos Street and residential housing			
		East: Residential housing and school		
		South: Ruthin Community Hospital		
		West: Residential housing.		

3.2 Site Walkover Survey

- 3.2.1 A site walkover survey was completed by a Caulmert Engineer on the 24th December 2020. The site walkover comprised of an external inspection of the site and buildings, no access to the buildings was available at the time, subsequently access to the buildings was provided during the ground investigations and the observations below have been updated.
- 3.2.2 A summary of the observations made during the site visits are presented in Table 2.2 below. Photographs of the former 'Coke Store' are included in Appendix 2.

Table 2.2: Summary of Observations from the Site Walkover Survey

Observations	Comments
Buildings and Structures	The main school building occupies the centre of the site and appears to comprise a 19 th century stone building with a pitched roof, with a later 20 th century extension. A playground surrounds the school building to the south, west and north. A further single storey brick 'community' building is located in the east of the site with a small brick substation. The majority of the site is covered in asphalt hardstanding. A car park is located in the south of the site accessed via an asphalt road in the east. A retaining wall supports the playground above Rhos Street in

	the north, with three shuttered/boarded 'window' type openings noted. These lead into a basement/under croft feature approximately 6m in length and stretching back approximately 4m from the retaining wall and approximately 2.2m in height. It is understood that this feature was originally accessed from the playground via steps which have now been infilled. Anecdotal evidence suggests it was used as a 'coke/coal' store for the school.
Topography	The general topography slopes down from east to west by approximately 2m. The site also slopes from the north up to the south by approximately the same. However, the site itself is generally level, development platforms have been created and the site is supported by a number of small retaining walls.
Site Access and Security	The site is currently accessed of Rhos Street via a locked gate from a shared access road with the adjacent residential dwellings. The site is generally surrounded by a mixture of low stone walling or wooden fencing. However, temporary 'herras' type security fencing currently secures the site.
Services	A foul drainage system appears to link into the main sewer within Rhos Street along with a surface water drainage system. A substation is located in the east of the site, and it is understood that the site is connected to the potable water supply.
Vegetation	Limited vegetation onsite, peripheral grass around car parking. No invasive species identified.
Surface Water Features	None identified.
Potential Contaminative Sources (on-site and offsite)	None.
Other Information	None.

3.3 Site History

3.3.1 It is understood that the site was acquired in 1845 with an 'iron' (assumed to be a corrugated iron clad building) school building erected, this was replaced in 1848 by a stone building, which forms the main school building today. Subsequent extensions were added in the 19th century, mid and late 20th century. A summary of potentially contaminating historical land uses both on and off site that could potentially impact upon the proposed development is presented in Table 2.3 below.

On-site History (activities within the red-line Site boundary)						
Potentially Contaminative Past Uses	Map Date					
	From	То				
Made Ground used to raise site levels	Unknown	Present				
Made Ground construction of school buildings	Pre 1875	Present				
Non-Contaminative Past Uses						
Playing fields	Pre-1875	Pre 1969				
Primary School	Pre-1875	Present				
Off-site History (activities within 500m of the red-line Site boundary)						
Potentially Contaminative Past Uses						
Construction materials from surrounding buildings and roads	Pre 1875	Present				
Filling in of sand pit	Post 1912	Pre 1969				
Gas Works (later a depot)	Pre 1875	Pre 1994				

Table 3.3 – Potentially Contaminating Land Uses

3.4 Geology

3.4.1 The British Geological Survey (BGS) online geological maps (1:50,000) indicates that there is no superficial deposit cover in the area of the site. However, the north of the site is shown as

'Artificial Ground- Made Ground'. It is assumed that this is associated with the creation of the development platforms for the construction of the school.

3.4.2 The bedrock underlying the Site is that of the Kinnerton Sandstone Formation, generally consisting of fine to medium grained cross-stratified sandstone (predominantly aeolian). It is likely that this stratum has been exploited by the historical sand pit located to the northeast.

3.5 Mining

3.5.1 The site lies outside the coal mining area and there are no non-coal mining activities recorded onsite. The risk from historical mining features onsite is therefore negligible.

3.6 Hydrogeology & Hydrology

- 3.6.1 The nearest mapped surface water feature is the River Clwyd approximately 655m west of the site boundary.
- 3.6.2 The bedrock has been classified as a 'medium vulnerability Principal Aquifer' which has been stated by the Environment Agency as being "layers of rock or drift deposits that have high intergranular and/or fracture permeability meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer".
- 3.6.3 The site is not within a source protection zone.

3.7 Ground Gas

3.7.1 No significant ground gas sources have been identified within the vicinity of the site or within the proximity of the site. In addition to this the site is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). No radon protective measures are necessary in the construction of new dwellings or extensions.

4 PRELIMINARY RISK ASSESSMENT

4.1 Qualitative Risk Assessment

- 4.1.1 A qualitative risk assessment has been undertaken for these potential source-pathwayreceptor linkages. This is based on consideration of both:
 - The likelihood of an event (takes into account both the presence of the hazard and receptor and the integrity of the pathway).
 - The severity of the potential consequence (takes into account both the potential severity of the hazard and the sensitivity of the receptor).
- 4.1.2 The risk assessment has been based on development of the site with a proposed 'Residential with plant up take' end-use (Table 4.1).

Source	Pollutant / Hazard	Receptors	Pathways to Receptor	Associated Hazard [Potential severity]	Likelihood of Occurrence	Potential Risk
On-site Made Ground - relic foundations, coke	PAH, Heavy	Construction workers Future Site Occupiers	Contact, ingestion, inhalation	Effect on human health [Low-Severe]	Any risks can be mitigated by appropriate site management during construction stage. Asbestos awareness training and suitable PPE provided for construction staff. Pre-demolition asbestos survey and appropriate removal prior to demolition further reduce risk. Any contaminated Made Ground likely to be removed or isolated beneath hardstanding and/or a clean cover system/growing medium minimising risk to future site users.	Low Low
storage and waste ash, asbestos, demolition rubble	metals, Sulphate, Asbestos.	New in ground services and construction materials.	Direct contact	Degradation [Slight]	Any potential risks can be mitigated by use of appropriate construction materials, chemical resistant supply pipes and use of oversized service trenches and clean fill.	Low
		Controlled Waters Groundwater	Leaching via ground water	Pollution of controlled waters [Slight]	No significant mobile contaminants anticipated however this should be confirmed through intrusive investigations.	Low
On-site: Ground Gas from Made	Ground Gas.	Future Site Occupiers	Migration through soils or	Asphyxiation or explosion [Severe]	Limited Made Ground anticipated (generally <1m), and likely to comprise inert type materials with low gas generation potential.	Low
Ground.	Ground Gas.	Buildings	groundwater to indoor air.	Explosion [Severe]		Low
Offsite Ground Gas migrating from historic	Ground Gas	Future Site Occupiers	Migration through soils or groundwater.	Asphyxiation or explosion [Severe]	The historic sand pit is small in plan area suggesting limited ground gas generation potential. The site is located 'up gradient' of the Site and	Negligible to Low.
infilled sand pit to the northeast of site.		Buildings	Migration through service trenches,	Explosion [Severe]	therefore ground gas is unlikely to migrate to the site. In addition to this given the time since backfilling any potential ground gas generation potential should	Negligible to Low.

Table 4.1 – Summary of Potential Pollutant Linkages (Preliminary Conceptual Site Model)

Caulmert Ltd 4863-CAU-XX-XX-RP-O-3001-S0.P0 November 2021

		Neighbouring Properties	pipework to indoor air.	Asphyxiation or explosion [Severe]	have peaked.	Negligible to Low.
Offsite sources – Historic	Spillages and leaks may have resulted in	Construction workers Future Site Users	Direct contact, inhalation, ingestion	Effect on human health [Moderate to Low]	The site is 'up gradient' from source and a significant distance from site. Migration of contamination is very unlikely. Any risks can be mitigated by appropriate site management during construction stage.	Negligible to Low
Gasworks/Depot located to the northwest.	migration through ground of inorganic/organic contaminants.	New in ground services and construction materials.	Direct contact	Degradation [Slight]	The site is 'up gradient' from source and a significant distance from site. Migration of contamination is very unlikely. Any potential risks can be mitigated by use of appropriate construction materials/ and chemical resistant supply pipes.	Negligible to Low

5 **GROUND INVESTIGATION**

5.1 **Previous Reports**

5.1.1 No information relating to previous ground investigations carried out at the Site has been provided to Caulmert.

5.2 Current Ground Investigation

- 5.2.1 An intrusive site investigation was completed between the 18th and 19th October 2021. The ground investigation comprised:
 - 11no. window sample boreholes to max. 2.45m bgl; and
 - 3 no. falling head tests within three of the boreholes.
- 5.2.2 The principal objectives of the study were to examine the ground conditions, provide a preliminary assessment of the environmental liabilities and to determine whether the site is suitable for the proposed development. No specific historical contamination features have been identified in the desk study review. Therefore, the site investigation layout was designed to provide general site coverage. Site access was restricted by existing buildings/structures and services.
- 5.2.3 The position of the exploratory holes is presented on the Exploratory Hole Plan in Appendix 1.
- 5.2.4 The window sample boreholes were continuously inspected during drilling to check for indications of contamination and were logged by an experienced Caulmert representative. The exploratory hole logs are presented as Appendix 3.
- 5.2.5 In total 3no. window sample boreholes were installed with combined ground gas and groundwater monitoring installations. The remaining boreholes were infilled with arisings and a concrete plug and cap.
- 5.2.6 The falling head test records are presented in Appendix 4.

5.3 Geotechnical Laboratory Testing

- 5.3.1 A suite of physical laboratory testing was undertaken on representative soil samples. The laboratory tests comprised:
 - 1 no. particle size distribution (PSD) tests; and
 - 3 no. 2:1 Water Soluble Sulphate and pH.

5.3.2 Testing was scheduled by Caulmert and carried out at out at Celtest Limited and ALS Environmental Limited, both UKAS accredited testing laboratories. The geotechnical laboratory testing results are presented in Appendix 5.

5.4 Chemical Laboratory Testing

- 5.4.1 Eight (6no. Made Ground, 1no. Topsoil and 1no. natural soil) representative soil samples were collected from the window sample boreholes across the site and submitted to ALS Environmental Limited, a UKAS accredited environmental analytical laboratory.
- 5.4.2 The soil samples were submitted for an analytical suite comprising:
 - Heavy Metals,
 - Boron,
 - Beryllium,
 - Chromium,
 - Polyaromatic Hydrocarbons (PAH),
 - Total Petroleum Hydrocarbons (TPH) screen,
 - Asbestos,
 - pH, And
 - Water Soluble Sulphate.
- 5.4.3 The chemical laboratory test results are presented in Appendix 6.

6 **GROUND CONDITIONS**

6.1 General Stratigraphy

6.1.1 The general stratigraphy at the site comprised of Asphalt hardstanding over hardcore or locally topsoil within former landscaped areas, overlying a thin layer of residual soils over the Kinnerton Sandstone Formation. This generally reflected the published geology.

6.2 Hardstanding

- 6.2.1 Hardstanding covers the majority of the site outside the building footprint and comprises Asphalt from ground surface to depths of between 0.1 to 0.2m below ground surface. In the south of the site, where the more recent school buildings have been constructed on a development platform (cut into the slope) the asphalt is underlain by hardcore comprising light grey to pinkish grey fine to coarse sandy gravel of limestone and/or light grey and light brown slightly clayey in places sandy gravel of limestone.
- 6.2.2 In the north of the site around the original school buildings the asphalt is underlain by an old 'tarmac' hardcore typically only 100mm thick or less with no hardcore beneath.

6.3 Topsoil

6.3.1 Topsoil was recorded within the limited landscaped areas present across the site to depths of between 0.2m to 0.4m and generally comprised dark brown very slightly silty fine sandy topsoil with rootlets.

6.4 Made Ground

6.4.1 Made Ground comprising dark brown sand with rare gravel size fragment of ash and brick was encountered locally across the site at depths of between 0.2-0.4m and recorded to depths of between 0.3-1.0m. These deposits probably represent reworked residual soils where site levels may have been raised in the past as part of the creation of development platforms.

6.5 Kinnerton Sandstone Formation (Residual Soil and Bedrock)

- 6.5.1 The Kinnerton Sandstone Formation was found across the site and was found to generally have a weathering profile of residual soils comprising of brown fine sand grading into extremely weak fine to medium sandstone bedrock.
- 6.5.2 Residual soils were recorded at depths of between 0.2m and 0.4m across the site where the base of the Made Ground or hardcore was proven.

- 6.5.3 The Kinnerton Sandstone bedrock was proven in the majority of boreholes where the Made Ground/Residual soils were penetrated and beyond the residual soils had a shallow weathering profile grading from reddish brown or orangish brown to light creamy brown fine sand to extremely weak SANDSTONE. Typically, the boreholes refused at 1.45m, although locally within WS4 and WS10 the weathering profile/residual soil were observed to be deeper and allowed the boreholes to penetrate to 2.45m and 1.8m respectively.
- 6.5.4 Standard Penetration Test (SPT) 'N' values >50 were typically recorded at 1.45m bgl, although locally within two boreholes in the east of the site, where the natural topography remains and the weathering profile is deeper, N values of 6 and 31 were recorded, indicating loose and dense residual soils respectively. However, within both these boreholes N values >50 were recorded at around 2.0m bgl, where the boreholes refused.
- 6.5.5 A Particle Size Distribution test was carried out on one samples of the residual soil and confirmed the sand to be fine to medium grained.
- 6.5.6 The relationship between SPT N values and the angle of shearing resistance was established by Peck et al (Ref. 1.) and indicates a Phi of between 28° and 42°, but typically greater than 40°.

6.6 Installations

- 6.6.1 The following boreholes were installed with groundwater and gas monitoring standpipes:
 - WS3 to 1m (0.5m plain and 0.5m slotted).
 - WS5 (0.5m plain and 0.5m slotted).
 - WS7 (0.5m plain and 0.5m slotted); and
 - WS10 to 1.8 (0.8m plain and 1m slotted).

6.7 Groundwater

- 6.7.1 Groundwater was not observed in any of the boreholes during the ground investigation.
- 6.7.2 However, groundwater conditions are based on observations made at the time of the fieldwork. It should be noted that groundwater levels may vary due to seasonal and other effects.

6.8 Falling Head Tests

6.8.1 Falling head tests were undertaken on the 19th October 2021 within WS3, WS5 and W10. A

summary of the results is presented Table 6.1.

TP Ref.	Response Zone (m bgl))	Response Zone Strata	Infiltration Rate (m/s)
WS3	0.5-1.0	Residual Soils/Kinnerton	7.6 x 10 ⁻⁶
		Sandstone	
WS5	0.5-1.0	Residual Soils/Kinnerton	1.60 x 10 ⁻⁶
		Sandstone	
WS10	0.8-1.8	Residual Soils/Kinnerton	2.4 x 10 ⁻⁵
		Sandstone	

6.8.2 Falling Head tests indicate that infiltration rates within the Residual Soils and Kinnerton Sandstone Formation would support the use of soakaways. It is recommended that once a development layout is confirmed, BRE 365 Infiltration tests are undertaken at the location of proposed soakaway locations to confirm they are viable and to provide infiltration rates for detailed drainage design by a specialist.

7 CONTAMINATION ASSESSMENT

7.1 Methodology for Contamination Risk Assessment

- 7.1.1 This section assesses the likely potential contamination to be present, and the risk it may pose to human health, the natural environment and the built environment.
- 7.1.2 In the United Kingdom, the legislative regime for identifying and dealing with contaminated land is set out in Part IIA of the Environmental Protection Act 1990. The Act, together with associated Regulations and Guidance (published separately for England, Wales, Scotland and Northern Ireland), describe the regulatory functions and actions aimed at identifying contaminated land, and defining the persons liable for voluntary or enforced remediation.
- 7.1.3 The methodology recommended for identifying contaminated land is outlined in the DEFRA / EA published guidance document, CLR11 "Model Procedures for the Management of Land Contamination" (2004). The methodology takes the form of the identification of potential contaminant sources, pathways and sensitive receptors and their likely predilection to be linked. Under the guidance, this is termed a "pollutant linkage".
- 7.1.4 For there to be a potential risk from contamination, a complete-source-pathway-receptor pollutant linkage must exist, or potentially exist, during and after development of the Site. Risk can be defined as the combination of the consequence of a harmful effect and the probability of its occurrence. Each aspect of the pollutant linkage is defined below:
 - i) Source (contaminant): A substance that is in or under the land that has the potential to cause harm to the receptor.
 - ii) Pathway: The route(s) or means via which a receptor can be exposed to, or affected by, a contaminant.
 - iii) Receptor: The factor (person, built environment or ecosystems) that might adversely be affected by the source.
- 7.1.5 The potential sources, pathways and receptors for each site are encapsulated into a conceptual site model (CSM). A CSM is the means by which the sources, pathways and receptors are systematically considered; and either discounted, or else earmarked as potentially valid and warranting further investigation.
- 7.1.6 In accordance with the approach advocated in CLR11, a CSM has therefore been derived for the Site using information obtained during the desk study and site walkover, as reported earlier in this document, as well as the results from the ground investigation and from the laboratory chemical analyses of the samples collected from Site.

7.2 Human Health - Generic Assessment Criteria (GAC)

- 7.2.1 No visual or olfactory evidence of chemical contamination was encountered during the investigation.
- 7.2.2 All the samples submitted for testing also underwent asbestos screening, no fibres were identified within any samples.

7.3 Human Health - Generic Assessment Criteria (GAC)

- 7.3.1 Six samples of Made Ground and one sample of residual soil and one of topsoil were selected for laboratory chemical testing. A table showing the comparison of soil analytical results against generic assessment criteria (GAC) for Residential with plant uptake end use is presented in Appendix 7.
- 7.3.2 The data set for each chemical determinant has been assessed for the presence of potential outliers (based on the conceptual model) and to determine if the data are normally or non-normally distributed. The data set has been assessed with and without the present of the Tarmac sample from WS9 0.1-0.2m.
- 7.3.3 The pH values of the samples ranged between 7.67 and 9.01.
- 7.3.4 The soil organic matter content of the samples ranged between <0.35% and 6.34%. The results have been compared to 1% soil organic matter content values, in the first instance, as the most conservative value.
- 7.3.5 The results of the laboratory testing confirmed that all of the analysed metals, and all poly aromatic hydrocarbons (PAH) are generally present at concentrations below the appropriate GAC threshold value for residential with plant uptake values.
- 7.3.6 The exception was a sample of Tarmac taken from WS9 0.1m-0.2m which recorded exceedances for all speciation's and a sample of made ground/relic topsoil from 0.4m-0.6m WS4 , which recorded a slight exceedance for Benz (a)anthracene. The exceedances are summarised and highlighted in yellow in the table below:

Chemical of Concern	Generic Criterion Residential Plant Uptake 1% SOM (mg/kg)	Generic Criterion Public Open Space 1% SOM (mg/kg)	WS9 (0.1m- 0.2m)	WS4 (0.4m- 0.6m)	
Benz(a)anthracene	3.1	89	<mark>170</mark>	<mark>3.74</mark>	
Benzo(a)pyrene	5	5	<mark>122</mark>	3.29	
Benzo(b)fluoranthene	5.6	92	<mark>152</mark>	3.86	
Benzo(ghi)perylene	44	590	<mark>51.9</mark>	1.94	
Benzo(k)fluoranthene	8.5	130	<mark>64.3</mark>	1.61	
Chrysene	6	130	<mark>151</mark>	3.46	
Dibenz(a,h)anthracene	0.76	12	<mark>12.4</mark>	0.344	
Fluoranthene	260	8100	<mark>486</mark>	8.73	
Indeno(1,2,3,cd)pyrene	3.2	56	<mark>75.7</mark>	2.31	
Naphthalene	1.5	13000	<mark>7.36</mark>	0.045	
Phenanthrene	92	8100	<mark>320</mark>	5.52	
Notes.	yellow highlight indicates exceedance of residential SOM red text indicates exceedance of Public Open Space SOM				

Table 8.1: Summary of Chemical Exceedances

- 7.3.7 The Tarmac sample from WS9 (0.1m-0.2m) was found to have PAHs speciation's in exceedances with respect to GAC residential with plant uptake (1% SOM) and GAC Public Open Space (1% SOM) these PAH chemicals are typically a component within binding agents in Tarmac of a certain age.
- 7.3.8 The Made Ground/relic topsoil deposit within WS4 0.4m-0.6m was found to have a slight exceedance in Benz(a)anthracene with respect to GAC residential with plant uptake (1% SOM). When the WS9 0.1-0.2 sample is removed from the data set the 95th percentile is below the GAC and therefore the Made Ground/Relic Topsoil at WS4 and is unlikely to be a significant risk to end users and no further action is required.
- 7.3.9 Given that the site has only been developed with a school, a 3-band TPH screen was undertaken, the worst-case concentrations within each band have been assessed against the TPH CWG banding as a conservative assessment. All bandings are generally present at concentrations below the appropriate GAC threshold value with the exception of one sample (WS9 0.1-0.2m), which exceeded the GAC value for C10-C40.
- 7.3.10 A slight hydrocarbon odour was noted within the underlying Tarmac present in the south of the site. No other visual or olfactory evidence of chemical contamination was encountered during the investigation.

- 7.3.11 It is anticipated that the hardstanding will be broken out as part of demolition works prior to redevelopment of the site. Removing the Tarmac present beneath the northern playground area from residential areas and therefore breaking the source-pathway-receptor linkage. Asphalt and Tarmac are likely to be classified as 'non-hazardous/hazardous' and therefore may be costly to dispose of to landfill It may be possible to reuse both the asphalt and tarmac beneath roads either as inclusion in a hot mix, unbound aggregate or cold mix asphalt subject to further geotechnical and chemical laboratory testing and regulatory approval and an appropriate materials management plan.
- 7.3.12 All the samples submitted for testing also underwent asbestos screening, no fibres were identified within any samples.

7.4 Plant Life

- 7.4.1 There is limited topsoil present onsite, and it is anticipated that clean topsoil will need to be imported onto site to provide a growing medium within landscaped areas. However, as a preliminary risk assessment all chemical data has been assessed against GAC for determinands which can influence plant life. The data set for each chemical determinand has been assessed for the presence of potential outliers (based on the conceptual model) and to determine if the data are normally or non-normally distributed. No outliers have been removed.
- 7.4.2 All samples were below the GAC threshold criteria contaminant species assessed. Where there is no exceedance of a GAC, the risks are deemed to be insignificant, and the site is suitable for use without further consideration. A summary of the statistical assessment is included in Appendix 7.
- 7.4.3 Further advice from a landscape architect should be sought with regards to reusing the limited existing topsoil onsite and depth of a clean growing medium within proposed landscaped areas.

7.5 Groundwater

7.5.1 The European Water Framework Directive (2000/60/EC) (WFD) and its daughter Directives establish a consolidated way of controlling water quality. The Environment Agency (July 2008) has issued a revised Groundwater Protection Policy (known as GP3). The UK Government has set out a timetable for the adoption of the WFD which formalises the way in which the quality of surface water and groundwater are to be assessed. This is set out in 'The River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions' 2017.

- 7.5.2 A groundwater body is defined as groundwater in an aquifer capable of supporting an abstraction of 10m³/day or 50 people over a sustained period under the WFD. Groundwater bodies are a strategic resource, even if there is no current abstraction. Lesser amounts of groundwater in an aquifer are not considered as receptors in their own right but may still be pathways to other receptors such as surface water bodies or aquatic ecosystems.
- 7.5.3 No potentially contaminative sources have been identified onsite and the soil testing indicates that there are no elevated concentrations of Chemicals of Concern within the soils. Caulmert believe that the site does not pose a significant risk to Controlled Waters and no mitigation measures are required.

7.6 Ground Gas

- 7.6.1 The risks associated with the ground gases methane (CH4) and carbon dioxide (CO2) are assessed using BS 8485:2015 (Ref.2) and guidelines from CIRIA 665 (Ref. 3) and the NHBC (Ref.4).
- 7.6.2 Current UK best practice guidance suggests that the ground gas assessment and characterisation for a site is dealt with separately for different types of development. In the above guidance:
 - 'Situation A' covers all forms of development (residential and industrial/commercial developments), other than low rise residential development; and
 - 'Situation B' is defined as the specific development of low-rise (one to three storeys in height) housing with beam and block floors, vented sub-floor void and gardens.
- 7.6.3 The development proposals require consideration of Situation B.
- 7.6.4 The sensitivity of the development is high on account of the development comprising residential dwellings.
- 7.6.5 It is judged from the available evidence that the gas generation potential at the site is very low to low. as the ground conditions comprise Sands and Sandstone, with no ground gas generation sources recorded on or within the vicinity of the site.
- 7.6.6 Ground gas monitoring was outside the scope of this investigation however in accordance with CL:AIRE RB17, given the ground model no ground gas monitoring or ground gas protection measures are required.

7.7 Conceptual Site Model (CSM)

An updated CSM has been derived from the desk study, site walkover and ground investigation and is presented in Table 7.1 below.

Table 7.1 – Summary of Updated Potential Pollutant Linkages (Conceptual Site Model)

Source	Pollutant / Hazard	Receptors	Pathways to Receptor	Associated Hazard [Potential severity]	Likelihood of Occurrence	Potential Risk
On-site Tarmac (northern PAHs and TPHs. playground)		Construction workers Future Site Occupiers	Contact, ingestion, inhalation	Effect on human health [Low-Severe]	It is anticipated that the asphalt and tarmac hardstanding will be broken out as part of the demolition works and removed from beneath residential plots. Any risks can be mitigated by appropriate site management during construction stage ensuring materials are stockpiled separately. The Tarmac is only approximately 0.1m thick.	Low
	PAHs and TPHs.	New in ground services and construction materials.	Direct contact	Degradation [Slight]	It is anticipated that the asphalt and tarmac hardstanding will be broken out as part of the demolition works and removed from beneath residential plots. It was only observed locally in the north of the site between 0.1-0.2m bgl and new services will be laid below this level.	Negligible to Low
		Controlled Waters Groundwater	Leaching via ground water	Pollution of controlled waters [Slight]	It is anticipated that the asphalt and tarmac hardstanding will be broken out as part of the demolition works and removed from beneath residential plots.	Negligible to Low
On-site: Ground Gas from Made Ground Gas. Ground.	Future Site Occupiers	Migration through soils or groundwater to indoor air.	Asphyxiation or explosion [Severe]	Limited Made Ground encountered no significant ground gas sources identified on site. Existing school has had no ground gas issues. No special precautions required.	Negligible to Low	
	Buildings		Explosion [Severe]		Negligible to Low	
Offsite Ground Gas migrating from historic infilled sand pit to the northeast of site. Ground Gas	Future Site Occupiers	Migration through soils or	Asphyxiation or explosion [Severe]	The historic sand pit is small in plan area suggesting limited ground gas generation potential. The site is located 'up gradient' of the Site and	Negligible to Low.	
	Ground Gas	Buildings	through service trenches, pipework to indoor air.	Explosion [Severe]	therefore ground gas is unlikely to migrate to the site. In addition to this given the time since backfilling any potential ground gas generation potential should	Negligible to Low.
		Neighbouring Properties		Asphyxiation or explosion [Severe]	have peaked. Residential housing has been constructed between the subject site and the feature.	Negligible to Low.

Offsite sources – Historic Gasworks/Depot	Spillages and leaks may have resulted in migration through	leaks may have Future Site resulted in Users	Direct contact, inhalation, ingestion	Effect on human health [Moderate to Low]	The site is 'up gradient' from source and a significant distance from site. Migration of contamination is very unlikely. Any risks can be mitigated by appropriate site management during construction stage. No elevated contamination has been identified onsite.	Negligible to Low
located to the ground of inorganic/organic contaminants.	New in ground services and construction materials.	Direct contact	Degradation [Slight]	The site is 'up gradient' from source and a significant distance from site. Migration of contamination is very unlikely. No elevated contamination has been identified onsite.	Negligible to Low	

8 ENVIRONMENTAL ASSESSMENT AND RECOMMENDATIONS

8.1 Human Health

- 8.1.1 The risk assessment undertaken in Section 8 indicates that there are no contaminants of concern with respect to the proposed Residential end –use. The site is suitable for the proposed end use subject to the break-out and removal of the asphalt and tarmac from beneath residential plots.
- 8.1.2 However, should unforeseen contamination be encountered during the ground works/construction then works should be ceased in that area until it has been assessed by an Environmental Engineer.
- 8.1.3 At this stage, the CSM constitutes a risk assessment which determines only the likelihood of a linkage being present. The CSM should be refined and revised if during site works ground conditions are found to differ and potential contamination is encountered.
- 8.1.4 The identification of a potential pollutant linkage does not necessarily mean that there is a risk, or that the linkage is present, but that further investigation is required to establish whether or not that risk exists. Whereby a risk is identified and verified, the potential consequence of harmful effect and the likelihood of its occurrence should then be established in order to determine whether the risk is acceptable or unacceptable.

8.2 Plant Life

8.2.1 The risk assessment undertaken in Section 8 indicates that there are no contaminants of concern in concentrations which may be harmful to plant life present on-site. The results indicate that the limited topsoil onsite is chemically suitable, however it is recommended that a landscape architect is contacted for further advice regarding the requirements for any growing medium associated with landscaped areas.

8.3 Controlled Waters

8.3.1 No contamination sources have been identified and therefore it is concluded that the site is currently unlikely to pose a significant risk to controlled waters.

8.4 Precautions Against Ground Gas

- 8.4.1 The site is located in an area where Radon Protection measures are not required.
- 8.4.2 No ground gas generation sources have been identified onsite or within the close

proximity of the site, with either residual soils derived from the Kinnerton Sandstone Group and/or shallow bedrock recorded beneath the site. In general accordance with CL:AIRE RB17 no ground gas monitoring was undertaken, and no ground gas protection measures are required for the proposed dwellings.

8.4.3 While risks to construction workers are not generally discussed in this report, all contractors and maintenance workers should be made aware of the possible presence of Carbon Dioxide and depleted oxygen levels within excavations and confined spaces and should take all necessary Health and Safety precautions when working in trenches or confined spaces.

8.5 Water Supply Pipes

- 8.5.1 Permeation and accelerated deterioration of pipe material can occur due to chemical reactions between the pipe and contaminants in the ground in which it is laid. This can lead to premature failures resulting in leakage and loss of water quality.
- 8.5.2 No contaminants of concern have been identified and standard PPE water supply pipes are anticipated to be appropriate at the site however water supply pipes should be specified and laid in accordance with the regional water supply company's specifications.

8.6 Waste Management

- 8.6.1 The handling, re-use or disposal of waste is regulated by The Environment Agency. Any material excavated on-site may be classified as waste and it is the responsibility of the holder of a material to form their own view on whether or not it is waste. One of the ways this can be achieved is set out in the Development Industry Code of Practice (CoP; Ref. 5). This builds on the Environment Agency guidance document Definition of waste: developing greenfield and brownfield sites (2006). The Agency will take into account the use of the CoP in deciding whether to regulate materials as waste. If materials are dealt with in accordance with the CoP, the Agency considers that those materials are unlikely to be waste at the point when they are to be used for the purpose of land development.
- 8.6.2 All material proposed for off-site disposal (e.g., during future construction works) should be given a proper description and waste classification assessment as required by the Environmental Protection Duty of Care Regulations (Ref. 6), and in accordance with WM3 and the Environment Agency Technical Guidance on the assessment and classification of Hazardous Waste.

8.7 Outline Remedial Measures

8.7.1 No specific risks have been identified which require remedial action at this stage, other than the breakout and removal of asphalt/tarmac from beneath the residential plots.

9 GEOTECHNICAL ASSESSMENT AND RECOMMENDATIONS

9.1 Geotechnical Categorization of the Proposed Development

- 9.1.1 Eurocode 7, Section 2 advocates the use of geotechnical categorization of the proposed structure(s) to establish the design requirements. Initial categorisation can be made before site investigation and can be used to define the scope and extent of geotechnical investigation required. For the purposes of this investigation, the proposed structures have been classed as follows:
 - Geotechnical Category 1.

9.2 Site Preparation, Earthworks, Groundworks and Landscaping

- 9.2.1 There are several services which supply the former school including gas, electricity, water, telecoms and both surface and foul sewers. It appears as though the gas has been disconnected at the substation in the east of the site.
- 9.2.2 Excavation in close proximity to other mains services (sewers) will need to ensure that the excavation walls are stable or appropriately battered to a safe angle, where these are to be kept live. Temporary slope stability works may be required in any deep excavations.
- 9.2.3 A former basement has been identified in the north of the site, beneath the playground it is estimated that this is 6m in length and stretching back approximately 4m from the retaining wall fronting Rhos Street and approximately 2.2m in height. However, this will need to be confirmed through a detailed survey. It is anticipated that this will require filling to allow the proposed development to progress. However, altering the lateral loading on the retaining wall will need careful consideration and it is recommended that a structural survey is undertaken on the basement and the rest of the retaining wall.
- 9.2.4 Other than the basement feature, no other relic structures or obstructions were recorded other than weak bedrock at shallow depth. It is anticipated the any shallow (1.5m bgl) excavations into the weak bedrock should not present any difficulty for conventional plant and equipment. However, excavations beyond this depth may require the use of pneumatic breaker.
- 9.2.5 There is minimal Topsoil present on site however where present a topsoil strip should be undertaken at the start of the groundworks and appropriately stockpiled.
- 9.2.6 No groundwater was encountered during the ground investigation, and it is anticipated that groundwater will be at depth and therefore any minor groundwater seepages will

generally be minor to moderate and may be controlled by sump pumping methods. Care should be taken to ensure no significant loss of fines.

- 9.2.7 It should be noted that groundwater levels may vary from the time of the investigation, due to seasonal variations.
- 9.2.8 While it is anticipated that shallow excavations will generally be stable in the short term, It is recommended that no site personnel enter any trenches unless there is adequate support, and this has been assessed by a competent person.
- 9.2.9 Where entry to trenches is unavoidable, gas monitoring should be undertaken, and entry should be made if safe to do so. In addition, entry should be restricted to the absolute minimum time necessary depending on the monitoring and assessment by a competent person.
- 9.2.10 At this stage, Caulmert is not aware of proposals for significant reuse of existing soils as part of redevelopment proposals. Should earthworks be required, an earthworks specification along with earthworks testing of targeted soils will be necessary to ensure the appropriate management and reuse of the existing soils.

9.3 Foundations

- 9.3.1 It is understood that the development will principally comprise two storey residential houses. Although no loadings are known at this stage it is anticipated that loadings will generally be light to moderate.
- 9.3.2 The preliminary foundation designs in this section are based on the parameters given in Section 6. It is recommended that a detailed foundation assessment is undertaken on a plot-by-plot basis once a development layout is confirmed and site levels have been set.
- 9.3.3 It is anticipated that standard shallow foundations can be adopted across the site, any new foundations should be taken down through any Topsoil and Made Ground into the residual soils (brown fine sand) at a minimum depth of 0.5m bgl where an allowable bearing capacity of up to 175kN/m² can be assumed for foundation design of strip or small pads, which should limit the total foundation settlement to less than 25mm and differential settlement to half this value.
- 9.3.4 The depth of foundations should be designed, and the formations inspected, by a competent geotechnical engineer. Any sub-formation materials deemed as unsuitable, such as soft or loose zones, should be excavated and replaced with well compacted suitable granular fill or lean mix concrete.

- 9.3.5 Foundation excavations should be protected from water and inclement weather including frost and any water should be removed by pumping from a sump in the base of the excavation. Care should be taken to prevent the removal of fines when controlling groundwater. Further guidance should be sought if further groundwater control measures are required.
- 9.3.6 Soils non shrinkable

9.4 Ground Floor Slabs

- 9.4.1 Granular, non-plastic soils were recorded across the site and therefore ground bearing floor slabs can be designed to accommodate a bearing pressure of 50kPa. subject to the following criteria being satisfied:
 - The Topsoil/made ground is excavated and removed and replaced with wellcompacted granular material to an agreed engineering specification.
 - It is demonstrated that the soils are non-shrinkable, and desiccation is not present in sub-formation soils.
- 9.4.2 Prior to the placement of the founding materials and the construction of the ground bearing floor slab, the sub-formation and formation will need to be inspected and checked by a geotechnical engineer to ensure the ground conditions are as expected.
- 9.4.3 If low bearing and soft strata are identified at the formation, this should be reported to the Geotechnical Engineer immediately and remedial actions agreed.

11.6 Roads and Pavements

- 9.4.4 Based on the observations during intrusive site works it is considered that a minimum CBR of 5% will be achievable over the majority of the site where granular soils are present and can be used for preliminary design, subject to insitu testing during construction. Furthermore, CBR values >10% may be achievable across large areas of the site.
- 9.4.5 Proof rolling of the formation level will be required and any loose or soft spots to be removed and replaced with an engineered fill, in accordance with a suitable Specification. The formation level will also need to be protected during inclement weather from deterioration.
- 9.4.6 Prior to the placement of the founding materials and the construction of the road pavement, the sub-formation and formation will need to be inspected and checked in accordance with a suitable Specification to ensure the ground conditions are as

expected. All testing should be carried out in accordance with the strategy outlined in DMRB IAN 73/06 and confirm that the ground conditions at time of construction are consistent with the previous design parameters.

9.5 Protection of Buried Concrete

9.5.1 Three samples submitted for chemical and geotechnical testing were tested for pH and sulphate content (2:1 water soluble extraction). The testing results were as follows:

Table 10.1 – Assessment of Aggressive Chemical Environment for Concrete

	Results Range
pH (units)	7.4-7.8
Water soluble sulphate (SO ₄) (g/l)	0.014-0.02

9.5.2 The results have been compared to the guidance contained in BRE Special Digest 1, Concrete in aggressive ground, 2005. Based on Greenfield conditions and a mobile groundwater regime, in the range of proposed foundations, the site is classed as follows:

Table 10.2 – Assessment of Concrete Classification

Design Sulphate class	DS-1
ACEC Class	AC-1

9.5.3 Concrete below ground must comply with the requirements of Parts D to F of Special Digest 1, as appropriate.

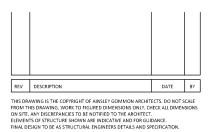
10 FURTHER WORK

The infiltration tests undertaken to date indicate that soakaways would provide a viable drainage solution at the site. However, it is recommended that Infiltration tests are undertaken in accordance with BRE365 at the locations and depths of proposed soakaways once a development layout is finalised to confirm suitability and provide infiltration rates for detail design.

A structural survey of the existing retaining walls where these are to be retained and the basement feature, followed by a geotechnical assessment for the backfilling of the basement and around existing retaining walls.

Given the size of the footprint of the existing school building which prevented access into these areas, it is recommended that either a watching brief is undertaken during the demolition works or some limited trial pitting is undertaken post demolition to confirm the ground conditions beneath the building footprints are as anticipated.

11 REFERENCES


- Phase 1 Geoenvironmental Desk Study Caulmert Ltd December 2020 4863-XX-XX-RP-O-0300.S0.P0
- [2] Peck et al. 1974. Correlation of SPT N Values.
- [3] British Standards Institution (2015): Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings BS8485:2015
- [4] CIRIA C665:2007 Assessing the risk posed by hazardous ground gases to buildings.
- [5] NHBC Ground Gas Guidance 2007
- [6] CL:AIRE (2008): *Definition of Waste: Development Industry Code of Practice* (September 2008).
- [7] Environmental Protection (Duty of care Regulations 2009).

APPENDICES

Figures and Drawings

(OPTION 2)

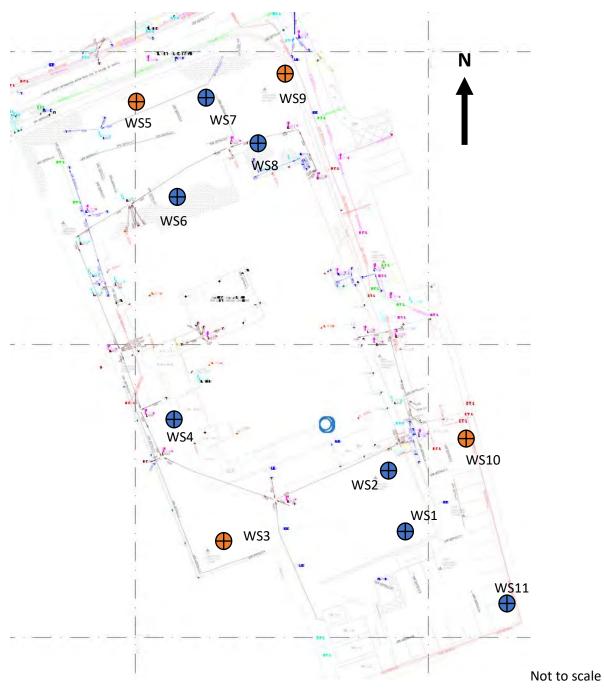
SKETCH SITE LAYOUT

RHOS STREET, RUTHIN.

For MEDRA and ADRA

PROJECT

DRAWING TITLE


NEW HOUSING:

A	١G		GOM	SLEY MMON		
C1	083	002	-			
JOB No		DRAWING No	REV	/ISION		
DRAWI STATUS		PRELIN	/INARY			
SCALE	APPROX. 1:500@A3	DATE 20/10/21	drawn SV	CHECKED		

THE OLD POLICE STATION, 15 GLYNNE WAY, HAWARDEN, CH5 3NS Tel: 01244 537 100 | wales@agarchitects.co.uk | www.agarchitects.co.uk Ainsley Gommon Architects.tud. Registered in England & Wales No.4187948 Resistered office: 1 Potres Tree: Hamilton Saures Rikeholaed (1441 6)N

4863 – Former Rhos Street School, Ruthin

Exploratory Borehole Plan

Key:-

H Installed Window Sample Borehole

Window Sample Borehole

'Coke Store' Photographs

Project: Rhos Street, School, Ruthin

1

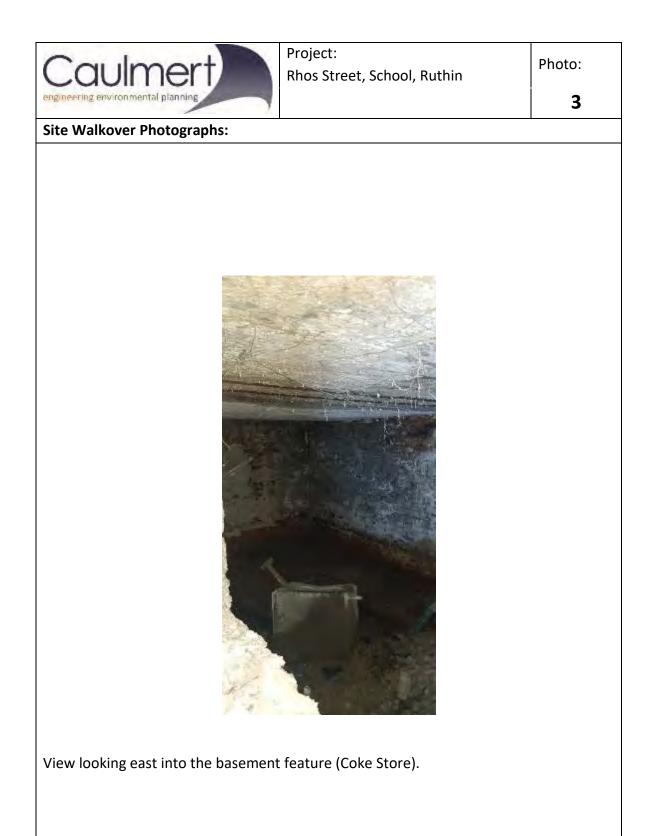
Site Walkover Photographs:

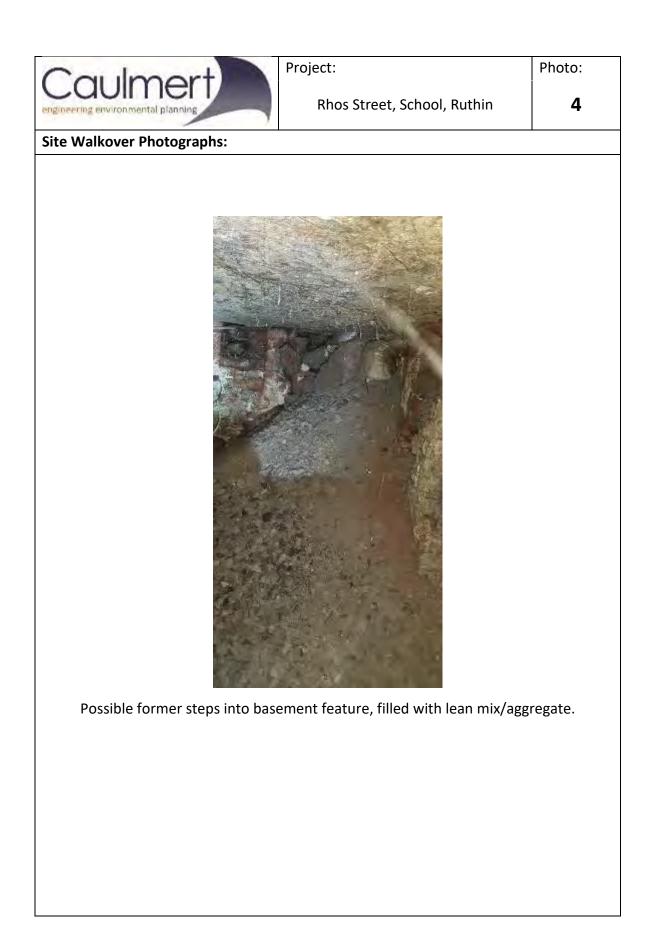
Existing Rhos Street retaining wall with three openings, with original school building in the background.

Project: Rhos Street, School, Ruthin

Photo:

2a &2b


Site Walkover Photographs:



One of the sealed up openings within retaining wall along northern boundary (Rhos Street).

Playground above Rhos Street Retaining wall, no evidence of infilled basement, although playground has been resurfaced.

Exploratory Hole Logs

	Co	aulr	ne	rt	Project:			Ref:	
	e d'ect	Castan -	n.) øl. n i		Former	Rhos Stro	eet School, Ruthin	١	NS1
Boring	g dat	e:		Logged by:	Client:			Project	ID:
18	3.10.	2021	ĺ	DK		A	DRA		4863
E	leva	tion			Coordina	tes			
	epth			Description	1				
from 0		<u>to</u> 0.2		Acabalt					
0		0.2		Asphalt [HARDSTANDIN	IG].				
0.2		0.4		Light grey fine t	to coarse sa	ndy gravel.			
				Gravel fine to c	oarse suban	gular of lin	nestone.		
				[HARDCORE]		0			
0.4		1.45	5	Light grey slight	tly clayey fin	e to coarse	e sandy gravel.		
				Gravel fine to c	oarse suban	gular of lin	nestone.		
				[HARDCORE]					
			I		Refuse	ed at 1.45n	n		
					Samples:	Env 0.5m-().7m		
Notes.			Bore	hole scanned wit	h CAT prior to	drilling			
							der supervision of Caulme	ert Limited	
			Gro	undwater – No gro	oundwater end	countered.			
S	Samp	ling &	Reco	overy Details (m)			SPT test deta	ils	
Depth from	(m) to		overy %)	comment	s	Depth (m)	Blow count	N	Comment
0	1	1	00			1-1.45m	4,5; - 48,2 (0mm)	50+	Refused
		X							

	Co	JUI	mer	t	Project:		Ref:		
	e d'echi	6.120	and el anin		Former Rhos	Street School, Ruthin	۱ ا	NS2	
Boring	g date	e:	1	Logged by:	Client:		Project	ID:	
18	3.10.2	2021		DK		ADRA	4863		
E	levat	ion			Coordinates				
D from	epth	(m) to	I	Description					
0		0.2		Asphalt					
-		-		HARDSTANDIN	IG].				
0.2		1.45	5	light grey to pi	nkish grey fine to (coarse sandy gravel.			
				· ·	oarse subangular				
				[HARDCORE]	-				
					Refused at 1	l.45m			
					Samples	:-			
Notes.			Borel	nole scanned wit	h CAT prior to drilling				
						td under supervision of Caulm	ert Limited		
			Grou	ndwater – No gro	oundwater encounter	red.			
San	npling	g & Re	ecover	y Details (m)		SPT test details			
Depth from	(m) to		overy %)	comments	Depth (m)	Blow count	N	Comment	
0	1		00		1-1.45m	6,6; -5,45 (10mm)	50+	Refused	
				•					
	•			Research Store					
			1204 100 100						
			<u></u>	105		The HA	NO.		
			Se s		A CARLE	the state		• • • 2 • • 2	
								0.0	
			•	ny tanja ing tang ang pang	ing and the second s				
				Ale Conterna	Haddeer on Alexy prior be a pairs Sand of the schools, Stor- (A)				
						· · · · ·			
			1900 1915	and the second second					

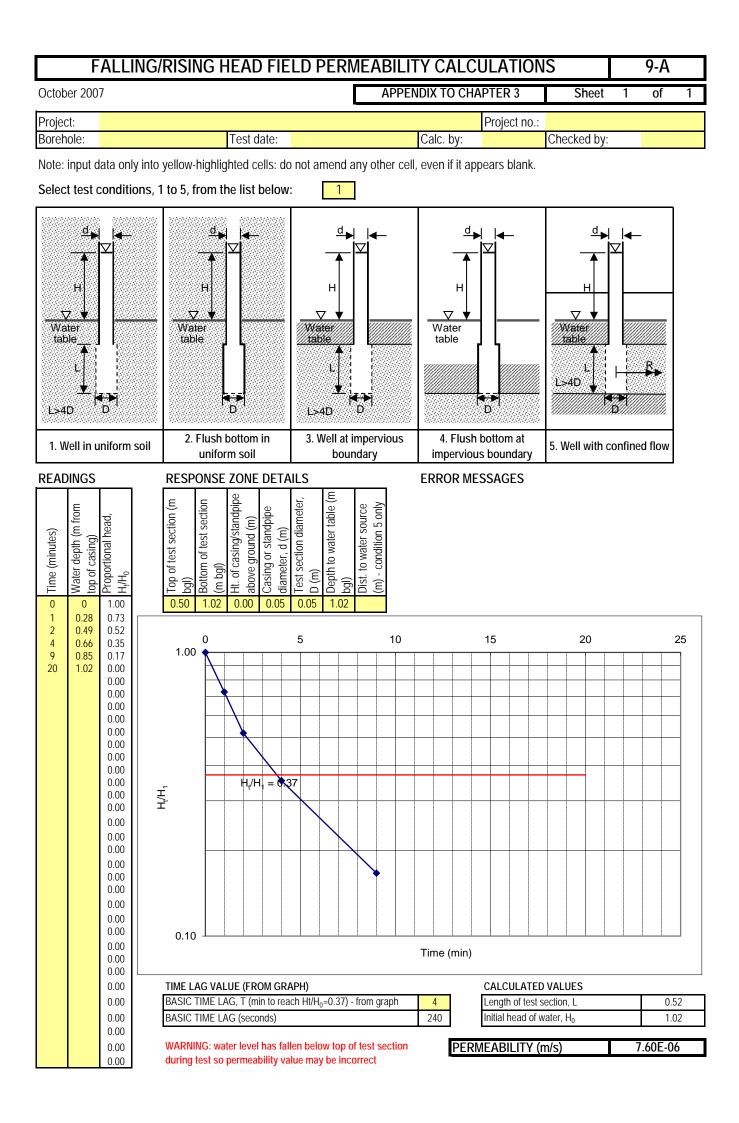
(Caul	me	ert	Project:			Ref:	
6	green conta	en al plan	in .	Former R	hos S	treet School, Ruthin	,	WS3
Boring	date:		Logged by:	Client:			Project	ID:
18.	10.2021		DK			ADRA		4863
	evation			Coordinate	s			
De from	epth (m) to	<u>,</u>	Description					
0	0.		Asphalt [HARDSTANDIN	G].				
0.2	0.	4	Light grey fine to Gravel fine to co [HARDCORE]					
0.4	1.0	00	Dark brown fine [MADE GROUNI	_	OIL]			
1.00	1.4	15	Light brown fine [KINNERTON SA					
				Refused	at 1.4	5m		
				Env: 0.5	5-0.8 (m)		
Notes.		Wir	ehole scanned with Idow Samples form Jundwater – No gro	ed by Explorati	on Ltd	under supervision of Caulı I.	nert Limited	
Sa	ampling	& Rec	overy Details (m)			SPT test de	tails	
Depth (from 0	(<u>m)</u> Re to 1	cover (%) 100	y comments	<u>s </u>	Deptl (m) 0-0.4	Blow count	N n) 50+	Comment Refused
	1							1

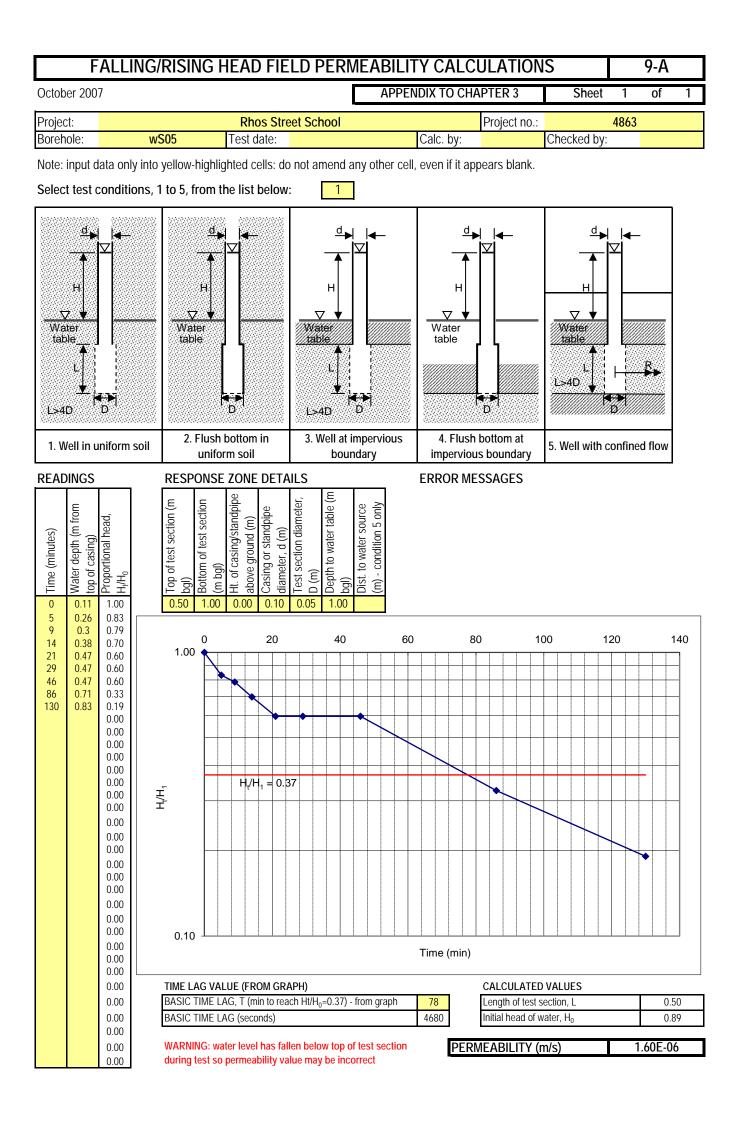
1	Cc	1Ur	ne	rt 🔼	Project:			Ref:	
	e directi	ustan s	n.al el a in		Former R	hos Stree	et School, Ruthin	۱	NS4
Boring	, date	:		Logged by:	Client:			Project	ID:
18	8.10.2	021		DK		ADF	RA		4863
E	levat	ion			Coordinates	5			
D from	epth	(m) to		Description	·				
0		0.1		Asphalt					
				' [HARDSTANDIN	NG].				
0.1		0.4		Light grev fine	to coarse sandy	/ gravel.			
-		-			oarse subangu	-	estone.		
				[HARDCORE]	0.	-			
0.4		0.6		Brown silty Sar	nd with rare gra	vel.			
		2.0		-	n subangular of		2.		
					ID/RELIC TOPSC				
1.00		2.45	5	Red brown fine	e SAND.				
						remely we	eak fine SANDSTONE.		
				-	ANDSTONE FOR	-			
					Refused	at 2.45m			
				Sample	es: Env 0.4-0.6n	n, Small B	ulk 0.5-1.0m		
Notes.					h CAT prior to dr				
					ned by Exploratic oundwater encou		er supervision of Caulme	ert Limited	
s	Sampl	ing &		very Details (m)		intereu.	SPT test deta	ils	
Depth	(m)	Rec	overy			Depth			
from 0	to		%)	comment	ts	(m) I-1.45m	Blow count	<u>N</u>	Comment
1	2	100				2-2.45	2,2: - 1,2,1,2, 4,6: - 7,27,16(50mm)	-	Refused
					Hard Hard Hard Hard Hard Hard Hard Hard				

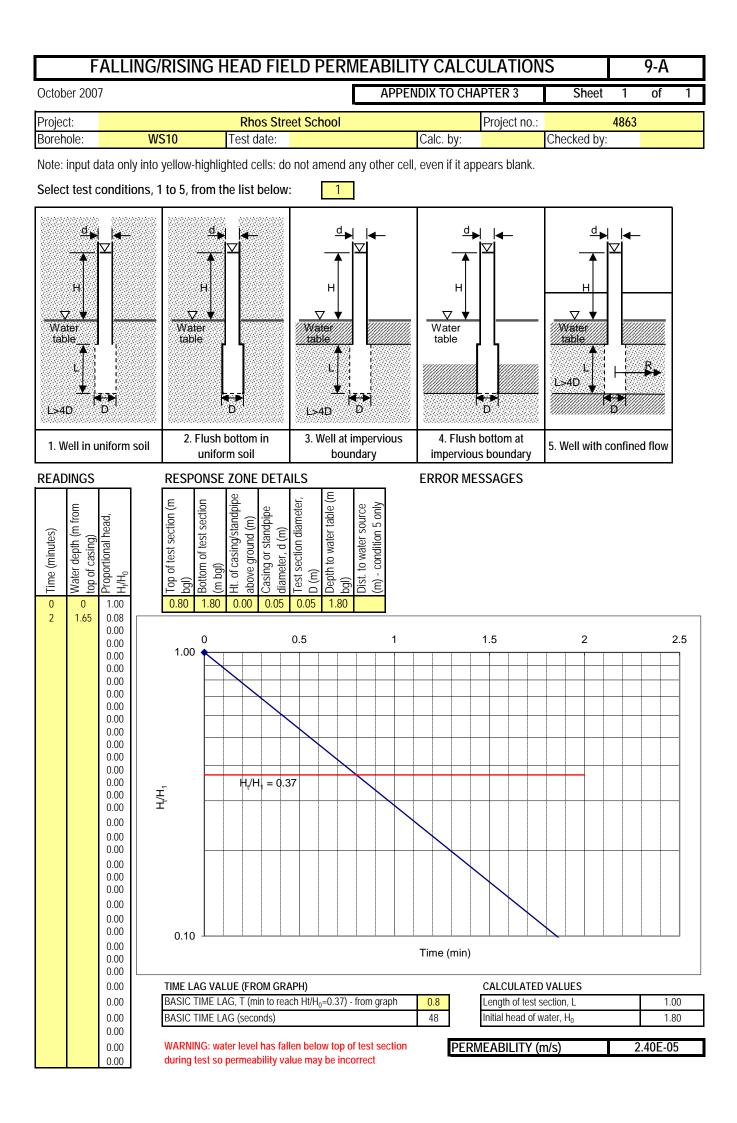
C	aul	me	rt	Project:		F	Ref:	
edi	eti astan	on al el na		Former Rhos	Street School,	Ruthin	V	NS5
Boring da	ate:		Logged by:	Client:		F	roject	ID:
	0.2021		DK		ADRA		-	4863
Elev	ation			Coordinates	507592.1864	347301.4804	4 11.	414
	th (m)		Description	l				
from	<u>to</u> 0.1		-					
0	0.1	L	Asphalt [HARDSTANDIN	IG].				
0.1	0.2	2	Tarmac					
			[HARDSTANDIN	IG]				
0.2	0.4	1		e sand with rare fi	ne gravel size fra	gment of ash	and ra	re medium
			sized gravel of to [MADE GROUN]					
0.4	0.6	5	Brown fine SAN	D.				
			[RESIDUAL SOIL	– TOTALLY WEAT	HERED KINERTO	N SANDSTONI	E FORN	IATION]
0.6	1.4	5	Orangish browr	n fine SAND gradin	g into extremely	weak SANDS	TONE.	
			[KINNERTON SA	NDSTONE FORM				
				Refused at 1	-			
			Samplin	ng: Env 0.2-0.4m, S	mall Bulk 0.6-1.0)m		
Notes.				n CAT prior to drilling				
				ned by Exploration L bundwater encounter		on of Caulmert I	Limited	
		0.0	anatator no gio		•••			
Sam	npling 8	& Rec	overy Details (m)		SF	PT test details		
Depth (m from to		covery (%)	/ comment	s Dep		v count	N	Comment
0 1		100		1-1.4	,	,8,29(10mm)	50+	Refused

C	au	Ime	rt	Project:			Ref:	
e di	en esta	an an Alekan		Former	Rhos Stre	eet School, Ruthin	١	NS6
Boring da	ate:		Logged by:	Client:			Project	ID:
-	0.202	1	DK		AD	DRA		4863
Flev	ation	1		Coordinat	es			
	th (m)			coordinat				
from		to	Description					
0	0).1	Asphalt [HARDSTANDIN					
			-	0].				
0.1	0).2	Tarmac					
			[HARDSTANDIN	G]				
0.2	0).3	Dark brown fine	e sand with ra	are fine gr	avel size fragment of a	sh and ra	re medium
			sized gravel of b	orick.				
			[MADE GROUN	D]				
0.4	1.	.45	Brown fine SAN	D.				
			[RESIDUAL SOIL	– TOTALLY V	VEATHER	ED KINERTON SANDSTO	NE FORM	/ATION]
				Refuse	d at 1.45n	n		
Notes.		Bor	ehole scanned with	n CAT prior to	drilling			
						der supervision of Caulme	rt Limited	
		Gro	undwater – No gro	undwater enco	ountered.			
Sam	npling	J & Rec	overy Details (m)			SPT test detai	ls	
Depth (m from to		ecovery (%)	/ comment	e	Depth (m)	Blow count	N	Comment
0 1	.	100	comment	3	1-1.45m	4,5: - 5,6,8,12	31	Comment

r Rhos Street Schoo lford & Wrekin Servic tes 507531.3285 aminae of dark brow	n silty sand with	roject I 4 11.4	497 4873
tes 507531.3285	347203.5383 n silty sand with	4	497 4873
aminae of dark brow	n silty sand with	11.4	4873
aminae of dark brow	n silty sand with		
	- -	rare fi	ne gravel
	- -	rare fi	ne gravel
	- -	rare fi	ne gravel
	- -	rare fi	ne gravel
	- -	rare fi	ne gravel
	- -	rare fi	ne gravel
WEATHERED KINERT			
	ON SANDSTONE	FORM	IATION]
grading into extremel	y weak fine SANI	DSTON	IE
RMATION]			
sed at 1.45			
all Bulk 0.5m-0.8m			
o drilling			
	sion of Caulmert Li	imited	
	SPT test details		
	ow count	N	Comment
1-1.45m 2,2: - 5,1	13,21,11(10mm)	50+	Refused
r	countered. Depth (m) Bl	sed at 1.45 nall Bulk 0.5m-0.8m o drilling ration Ltd under supervision of Caulmert Li countered.	sed at 1.45 hall Bulk 0.5m-0.8m b drilling ration Ltd under supervision of Caulmert Limited countered.


C	aulme	ert	Project:			Ref:	
e d'e	een astan analaha	illi -	Former	Rhos Stre	et School, Ruthin	١	NS8
Boring da	ate:	Logged by:	Client:			Project	ID:
18.10	0.2021	DK		AD	RA		4863
Elev	vation		Coordinat	es			
Dept from	th (m) to	Description					
0	0.1	Asphalt					
-		[HARDSTANDIN	G].				
0.1	0.2	- Tarmac	-				
_		[HARDSTANDIN	G]				
0.2	1.45	- ,	•		gravel and very rare gr lish brown fine to medi		-
		[MADE GROUN					•
		-		ed at 1.45m	1		
			Sampling:				
Notes.	Bo	rehole scanned with					
					der supervision of Caulme	rt Limited	
	Gro	oundwater – No gro	undwater enc	ountered.			
Sam	npling & Rec	overy Details (m)			SPT test detai	ls	
Depth (m		-		Depth			_
		comment	S				Comment
Depth (m from to 0 1		ry comment	s	Depth (m) 1-1.45m	Blow count 5,9: - 13,19,18 (20mm	N 50+	Comn Refus


C	aul	me	rt	Project:			Ref:	
0.6	Peetrasta	an.J. el. n i		Forme	r Rhos Stre	et School, Ruthin	V	NS9
Boring da	ate:		Logged by:	Client:			Project I	D:
-	0.2021		DK		AD	RA	-	4863
Ele	vation			Coordinat				
	oth (m)		Description					
from	to)	Description					
0	0.1	1	Asphalt					
			[HARDSTANDIN	G].				
0.1	0.2	2	Tarmac					
			[HARDSTANDIN	G]				
0.2	0.8	0	Brown fine SAN	D				
			[RESIDUAL SOIL	– TOTALLY W	/EATHERED	KINERTON SANDSTON	E FORMATI	ON]
0.80	1.0	0	Orangish brown	fine SAND g	rading into e	extremely weak fine SA	NDSTONE	
			[KINERTON SAN	DSTONE FOR	MATION]			
				Refu	used 1.45m			
			Samplir	ng: Env 0.1m	-0.2m. Smal	l Bulk 0.8-1.0m		
Notes.		Bore	hole scanned with	-	-			
						supervision of Caulmert I	_imited	
		Grou	Indwater – No grou	undwater enco	untered.			
Sa	molina	& Reco	overy Details (m)			SPT test deta	ails	
Depth (n					Danth			
	<i>.</i>	covery (%)	comment	s	Depth (m)	Blow count	N	Comment
0 1		100			1-1.45m	3,7: - 14,22,14(20mm	ı) 50+	Refused


(20	ur	ne	rt	Project:			Ref:	
0	d ee li.	4.51.80	n.algl.ori		Former	Rhos St	reet School, School	V	VS10
Boring	date	:		Logged by:	Client:			Project	ID:
18.	10.2	021	Ì	DK		ļ	DRA		4863
Ele	evati	ion			Coordina	tes			
De from	pth			Description		•			
0		<u>to</u> 0.4		Dark brown ven coarse gravel siz [TOPSOIL].		-	ndy Topsoil with rootle	ts and rare	e fine to
0.4		1.50		Brown fine SAN [RESIDUAL SOIL		WEATHE	RED KINERTON SANDS	ONE FORI	MATION]
1.50		1.85		Light creamy bro Below 1.8m red [KINERTON SAN	dish brown	to light r	eddish brown.		
					Refuse	ed at 1.8	im		
				Sampling:	Env: 0.1m-0	0.3m Sma	III Bulk 1.5m-2.0m		
Notes.				hole scanned with					
				low Samples form Indwater – No gro			nder supervision of Caulr	nert Limited	
Sa	ampl	ing &	Reco	very Details (m)			SPT test det	ails	
Depth (from	(m) to		overy %)	comments	5	Depth (m)	Blow count	N	Comment
0	1		00			1-1.45m		28	
1	1.8	1	00			1.8-2.45	5 14,11:-21,24,5 (0mr	n) 50+	Refused

C	Ca	ulme	ert	Project:			Ref:	
0.0	Pee In	stin malden		Former	r Rhos Stre	et School,Ruthin	v	VS11
Boring c	late	:	Logged by:	Client:			Project	ID:
18.1	L0.2	020	DK		AD	RA		4863
Ele	vati	on		Coordinat	tes			
De from	pth ((m) to	Description					
0		0.2	Grass over dark [TOPSOIL].	c brown very	slightly sill	y fine sandy Topsoil wit	h rootle	ts.
0.2		0.70	Brown fine SAN [RESIDUAL SOIL			D KINERTON SANDSTO	NE FORM	/ATION]
0.70		1.00	Dark orangish b [KINERTON SAN					
	<u> </u>			Refuse	ed at 1.45m	1		
			Sample	es: Env: 0.4-0).6m Small	Bulk 0.8-1.0m		
Notes.		Вог	ehole scanned with	h CAT prior to	drilling			
			ndow Samples form pundwater – No gro			ler supervision of Caulmer	t Limited	
Sa	mpli	ing & Rec	overy Details (m)			SPT test detail	s	
Depth (r from	n) to	Recover (%)	comment	S	Depth (m)	Blow count	N	Comment
0 1	1	100			1-1.45m	25(50mm), 28,22(30mm) 50+	Refused

Falling Head Tests

Laboratory Testing Results - Geotechnical

Date: 01 November 2021

Test Report Ref: TR 841795

Caulmert Ltd. Unit F13 InTec Parc Menai Bangor LL57 4FG

Page 1 of 1

Contract: Rhos Street School, Ruthin

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:2018 - Clause 12, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S98586
Client Ref. No:	WS04 @ 0.5 - 1.0m
Date and Time of Sampling:	20/10/2021
Date of Receipt at Lab:	25/10/2021
Date of Start of Test:	28/10/2021
Sampling Location:	WS04 @ 0.5 - 1.0m
Name of Source:	Site Won
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Caulmert CQA Engineer (Test results apply to sample as received)
Tested By:	СН
Material Description:	Sand
Target Specification:	N/A

RESULTS:

pH Value =		7.8
95% Confidence limit*	=	7.6% - 8%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.
<u>Comments</u>	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	(A) (A)
Expanded uncertainty = combined uncertainty multiplied by a factor (k) of	Galaver
2.	Meical Owen
	Soils Team Manager

Date: 11 November 2021

Page 1 of 1

Test Report Ref: TR 841796

Caulmert Ltd. Unit F13 InTec Parc Menai Bangor LL57 4FG

Contract: Rhos Street School, Ruthin

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Sulphate Content of in accordance with BS 1377: Part 3: 2018: Clause 7.6.5.2 (Gravimetric Method)

Certificate of sampling received:NoLaboratory Ref. No:S98586Client Ref. No:WS04 @ 0.5 - 1.0mDate and Time of Sampling:20/10/2021Date of Receipt at Lab:25/10/2021Date of Start of Test:05/11/2021Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%Water Soluble Sulphate as SO420 mg/L18.6% - 21.4%	SAMPLE DETAILS:		
Client Ref. No:WS04 @ 0.5 - 1.0mDate and Time of Sampling:20/10/2021Date of Receipt at Lab:25/10/2021Date of Start of Test:05/11/2021Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Certificate of sampling received:	No	
Date and Time of Sampling:20/10/2021Date of Receipt at Lab:25/10/2021Date of Start of Test:05/11/2021Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Laboratory Ref. No:	S98586	
Date of Receipt at Lab:25/10/2021Date of Start of Test:05/11/2021Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Enginer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Client Ref. No:	WS04 @ 0.5 - 1.0m	
Date of Start of Test:05/11/2021Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Date and Time of Sampling:	20/10/2021	
Sampling Location:WS04 @ 0.5 - 1.0mName of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Date of Receipt at Lab:	25/10/2021	
Name of Source:Site WonMethod of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receiv)Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Date of Start of Test:	05/11/2021	
Method of Sampling:Disturbed Bulk SampleSampled By:Caulmert CQA Engineer (Test results apply to sample as receivTested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Sampling Location:	WS04 @ 0.5 - 1.0m	
Sampled By:Caulmert CQA Engineer (Test results apply to sample as receivTested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Name of Source:	Site Won	
Tested By:DWMaterial Description:SandTarget SpecificationN/ARESULTS:ResultsMass of soil passing 2.0mm test sieve73%	Method of Sampling:	Disturbed Bulk Sample	
Material Description:SandTarget SpecificationN/ARESULTS:Results95% Confidence limit*Mass of soil passing 2.0mm test sieve73%	Sampled By:	Caulmert CQA Engine	er (Test results apply to sample as receiv
Target Specification N/A RESULTS: Results 95% Confidence limit* Mass of soil passing 2.0mm test sieve 73% 95% Confidence limit*	Tested By:	DW	
RESULTS: Results 95% Confidence limit* Mass of soil passing 2.0mm test sieve 73%	Material Description:	Sand	
Results 95% Confidence limit* Mass of soil passing 2.0mm test sieve 73%	Target Specification	N/A	
Mass of soil passing 2.0mm test sieve 73%	RESULTS:		
		Results	95% Confidence limit*
Water Soluble Sulphate as SO4 20 mg/L 18.6% - 21.4%	Mass of soil passing 2.0mm test sieve	73%	
Water Soluble Sulphate as SO4 20 mg/L 18.6% - 21.4%			
	Water Soluble Sulphate as SO ₄	20 mg/L	18.6% - 21.4%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.
<u>Comments</u>	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Prower
Expanded uncertainty = combined uncertainty multiplied by a factor (k)	Suranc
of 2.	Meical Owen
	Soils Team Manager

Date: 01 November 2021

Test Report Ref: TR 841797

Caulmert Ltd. Unit F13 InTec Parc Menai Bangor LL57 4FG

Page 1 of 1

Contract: Rhos Street School, Ruthin

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:2018 - Clause 12, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S98586
Client Ref. No:	WS07 @ 0.5 - 0.8m
Date and Time of Sampling:	20/10/2021
Date of Receipt at Lab:	25/10/2021
Date of Start of Test:	28/10/2021
Sampling Location:	WS07 @ 0.5 - 0.8m
Name of Source:	Site Won
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Caulmert CQA Engineer (Test results apply to sample as received)
Tested By:	СН
Material Description:	Sand
Target Specification:	N/A

RESULTS:

pH Value =		7.4
95% Confidence limit*	=	7.21% - 7.59%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.
Comments	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	(PIO SO)
Expanded uncertainty = combined uncertainty multiplied by a factor (k) of	Util Wer
2.	Meical Owen
	Soils Team Manager

Caulmert Ltd. Unit F13 InTec Parc Menai Bangor LL57 4FG

Contract: Rhos Street School, Ruthin

Date: 12 November 2021 Test Report Ref: TR 841798

Page 1 of 1

LABORATORY TEST REPORT

TEST	REO	UIREMENTS:	

To determine the Sulphate Content of in accordance with BS 1377: Part 3: 2018: Clause 7.6.5.2 (Gravimetric Method)

SAMPLE DETAILS:

Certificate of sampling received:	No	
Laboratory Ref. No:	S98586	
Client Ref. No:	WS07 @ 0.5 - 0.8m	
Date and Time of Sampling:	20/10/2021	
Date of Receipt at Lab:	25/10/2021	
Date of Start of Test:	09/11/2021	
Sampling Location:	WS07 @ 0.5 - 0.8m	
Name of Source:	Site Won	
Method of Sampling:	Disturbed Bulk Sample	
Sampled By:	Caulmert CQA Engine	er (Test results apply to sample as receiv
Tested By:	DW	
Material Description:	Sand	
Target Specification	N/A	
<u>RESULTS</u> :		
	Results	95% Confidence limit*
Mass of soil passing 2.0mm test sieve	59%	
Water Soluble Sulphate as SO_4	15 mg/L	13.95% - 16.05%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.
Comments	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Jacower
Expanded uncertainty = combined uncertainty multiplied by a factor (k)	Small
of 2.	Meical Owen
	Soils Team Manager

Caulmert Ltd.	
Unit F13	
InTec	
Parc Menai	
Bangor	
LL57 4FG	

Contract: Rhos Street School, Ruthin

Date: 01 November 2021 Test Report Ref: TR 841800

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the pH Value of Soils in accordance with **BS 1377:Part 3:2018 - Clause 12, Electrometric Method.**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S98586
Client Ref. No:	WS11 @ 0.8 - 1.0m
Date and Time of Sampling:	20/10/2021
Date of Receipt at Lab:	25/10/2021
Date of Start of Test:	28/10/2021
Sampling Location:	WS11 @ 0.8 - 1.0m
Name of Source:	Site Won
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Caulmert CQA Engineer (Test results apply to sample as received)
Tested By:	СН
Material Description:	Sand
Target Specification:	N/A

RESULTS:

pH Value =		7.8
95% Confidence limit*	=	7.6% - 8%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.
Comments	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Browen
Expanded uncertainty = combined uncertainty multiplied by a factor (k) of	Surver
2.	Meical Owen
	Soils Team Manager

Date: 11 November 2021 Test Report Ref: TR 841801

Caulmert Ltd.	
Unit F13	
InTec	
Parc Menai	
Bangor	
LL57 4FG	

Contract: Rhos Street School, Ruthin

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Sulphate Content of in accordance with BS 1377: Part 3: 2018: Clause 7.6.5.2 (Gravimetric Method)

SAMPLE DETAILS:

Certificate of sampling received:	No	
Laboratory Ref. No:	S98586	
Client Ref. No:	WS11 @ 0.8 - 1.0m	
Date and Time of Sampling:	20/10/2021	
Date of Receipt at Lab:	25/10/2021	
Date of Start of Test:	05/11/2021	
Sampling Location:	WS11 @ 0.8 - 1.0m	
Name of Source:	Site Won	
Method of Sampling:	Disturbed Bulk Sample	e
Sampled By:	Caulmert CQA Engine	er (Test results apply to sample as receiv
Tested By:	DW	
Material Description:	Sand	
Target Specification	N/A	
<u>RESULTS</u> :		
	Results	95% Confidence limit*
Mass of soil passing 2.0mm test sieve	67%	
Water Soluble Sulphate as SO ₄	14 mg/L	13.02% - 14.98%

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.	These results relate only to the items tested.				
Comments	Report checked and approved by:				
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Jacower				
Expanded uncertainty = combined uncertainty multiplied by a factor (k)	Small				
of 2.	Meical Owen				
	Soils Team Manager				

Laboratory Testing Results - Contamination

Caulmert Ltd St. Asaph Office Unit 14, St. Asaph Business Park St. Asaph Denbighshire LL17 0LJ

Attention: David Kitching

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 26 October 2021 Caulmert Ltd 211019-86

Rhos Street School Ruthin 618670 16666

We received 8 samples on Tuesday October 19, 2021 and 8 of these samples were scheduled for analysis which was completed on Tuesday October 26, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results. The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.1 Versio

1 Version Issued: 26/10/2021

.

Superseded Report:

Validated

Received Sample Overview

Location: Rhos Street School Ruthin

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25179009	WS1		0.50 - 0.70	18/10/2021
25179010	WS3		0.50 - 0.80	18/10/2021
25179011	WS4		0.40 - 0.60	18/10/2021
25179012	WS5		0.20 - 0.40	18/10/2021
25179013	WS8		0.40 - 0.60	18/10/2021
25179014	WS9		0.10 - 0.20	18/10/2021
25179016	WS10		0.10 - 0.30	18/10/2021
25179017	WS11		0.40 - 0.60	18/10/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS

ALS -	SDG: Client Ref.:	211019-86 Report Number: 618670 Superseded Report: Location: Rhos Street School Ruthin																					
Results Legend X Test N No Determ	ination	Lab Sample No(s)		Lab Sample No(s)		Lab Sample No(s)			25179009		25179010		25179011		25179012		25179013		25179014		25179016		25179017
Possible		Customer Sample Reference			WS1		WS4 WS3		WS5		WS8		WS9		WS10		WS11						
Sample Types - S - Soil/Solid UNS - Unspecified Sol GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachat		AGS Reference																					
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewag		Depth (m	i)		0.50 - 0.70		0.50 - 0.80		0.40 - 0.60		0.20 - 0.40		0.40 - 0.60	0.10 - 0.20		0.10 - 0.30			0.40 - 0.60				
RE - Recreational Wat DW - Drinking Water Non UNL - Unspecified Liqu SL - Sludge G - Gas OTH - Other	er -regulatory	Containe	er	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)				
		Sample Ty	pe	ა	ა	S	ა	ა	ა	ა	ა	S	ა	S	ა	S	ა	ა	ა				
Asbestos ID in Solid Sample:	s	All	NDPs: 0 Tests: 8	x		x		X		x		x		x		X		x					
Boron Water Soluble		All	NDPs: 0 Tests: 8		X		X		X		X		X		x		X		x				
Chromium III		All	NDPs: 0 Tests: 8		X		x		X		X		X		X		X		X				
Cyanide Comp/Free/Total/Th	iocyanate	All	NDPs: 0 Tests: 8		X		x		X		X		X		X		X		x				
Hexavalent Chromium (s)		All	NDPs: 0 Tests: 8		X		X		X		x		х		x		x		x				
Metals in solid samples by O	ES	All	NDPs: 0 Tests: 8		X		X		X		X		х		x		x		x				
PAH by GCMS		All	NDPs: 0 Tests: 8		X		X		x		x		X		x		x		x				
рН		All	NDPs: 0 Tests: 8		x		X		x		X		X		x		x		x				
Phenols by HPLC (S)		All	NDPs: 0 Tests: 8		x		x		X		X		х		x		x		x				
Sample description		All	NDPs: 0 Tests: 8		X		X		X		X		X		x		x		x				
Total Organic Carbon		All	NDPs: 0 Tests: 8		X		X		X		X		X		x		x		x				
TPH c6-40 Value of soil		All	NDPs: 0 Tests: 8		x		x		X		X		x		x		X		x				

SDG: 211019-86 Client Ref.:

Report Number: 618670 Location: Rhos Street School Ruthin

Superseded Report:

Validated

Sample Descriptions

ery fine <0.0	63mm fine 0.00	63mm - 0.1mm	medium 0	.1mm - 2mm	coarse 2mm	- 10mm very coa	rse
ab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Descripti	on Inclusions	Inclusions 2	
25179009	WS1	0.50 - 0.70	Light Brown	n Loamy Sar	nd Stones	None	
25179010	WS3	0.50 - 0.80	Dark Brown	n Sandy Loa	im Stones	None	
25179011	WS4	0.40 - 0.60	Light Brown	n Loamy Sar	nd Stones	None	
25179012	WS5	0.20 - 0.40	Beige	Loamy Sar	nd Stones	None	
25179013	WS8	0.40 - 0.60	Dark Brown	n Sandy Clay L	.oam Stones	Vegetation	
25179014	WS9	0.10 - 0.20	Black	Stone/So	il Stones	Vegetation	
25179016	WS10	0.10 - 0.30	Dark Brow	n Loamy Sar	nd Stones	Vegetation	
25179017	WS11	0.40 - 0.60	Dark Brown	n Sandy Loa	m Vegetation	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 211019-86

Client Ref.:

CERTIFICATE OF ANALYSIS

 Report Number:
 618670

 Location:
 Rhos Street School Ruthin

Superseded Report:

Results Legend # ISO17025 accredited.	C C	ustomer Sample Ref.	WS1	WS3	WS4	WS5	WS8	WS9
M mCERTS accredited. aq Aqueous / settled sample.		_						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.50 - 0.70	0.50 - 0.80	0.40 - 0.60	0.20 - 0.40	0.40 - 0.60	0.10 - 0.20
* Subcontracted - refer to subcontractor report for		Sample Type Date Sampled	Soil/Solid (S) 18/10/2021					
accreditation status. ** % recovery of the surrogate standard to check the		Sample Time	10/10/2021	10/10/2021	10/10/2021	10/10/2021	10/10/2021	10/10/2021
efficiency of the method. The results of individual		Date Received	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
compounds within samples aren't corrected for the recovery		SDG Ref	211019-86	211019-86	211019-86	211019-86	211019-86	211019-86
(F) Trigger breach confirmed		Lab Sample No.(s)	25179009	25179010	25179011	25179012	25179013	25179014
1-4+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units	Method						
Moisture Content Ratio (% of as	%	PM024	3.8	11	7.1	7.7	8.9	1.2
received sample)								
Phenol	<0.01 mg/kg	TM062 (S)	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.1
			Ν	M	М	М	М	
Cresols	<0.01 malka	TM062 (C)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1
Cresols	<0.01 mg/kg	TM062 (S)						<0.1
			N	M	М	M	M	
Xylenols	<0.015	TM062 (S)	<0.015	<0.015	<0.015	<0.015	<0.015	<0.15
	mg/kg		N	M	M	Μ	М	
Phenols, Total Detected monohydric	< 0.035	TM062 (S)	<0.035	<0.035	<0.035	<0.035	<0.035	< 0.35
		1111002 (3)						~0.00
	mg/kg	┥───┤	N		М	M	М	
Soil Organic Matter (SOM)	<0.35 %	TM132	<0.35	3.65	1.11	2.02	1.53	5.79
			#	#	#	#	#	
pH	1 pH Units	TM133	9.01	7.75	8.55	8.04	8.32	8.7
		111133						0.1
		+	N		М	M	М	
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
			#	#	#	#	#	
Cyanide, Free	<1 mg/kg	TM153	<1	<1	<1	<1	<1	<1
.,,	- п шулу	111133	<1 M		M	СТ М		
							М	
TPH >C21-C40	<10 mg/kg	TM154	45.6	19.5	100	31.2	20.9	11400
TPH >C6-C40	<10 mg/kg	TM154	51.1	24.7	112	46.3	31.9	17100
	- to my/kg	111134	51.1	27.1	112	-U.U	01.0	17100
		<u> </u>						
TPH >C6-C10	<10 mg/kg	TM154	<10	<10	<10	<10	<10	<20
TPH >C10-21	<10 mg/kg	TM154	<10	<10	12.3	15.1	11	5690
	∽ iu iiig/kg	1111104	NI	NI 0	12.0	10.1		0690
Chromium, Trivalent	<0.9 mg/kg	TM181	14.1	5.23	7.97	3.59	6.18	5.3
Arsenic	<0.6 mm///m	TM181	5	6.92	5.33	4.63	4.72	1.75
Alsenic	<0.6 mg/kg	TIVITOT						
		I	N		М	M	М	
Beryllium	<0.01 mg/kg	TM181	0.248	0.623	0.411	0.419	0.366	0.113
			N	M	M	Μ	М	
Cadmium	<0.02 mg/kg	TM181	0.376	0.236	0.326	0.208	0.4	0.27
	-0.02 mg/ng	TWITCH						
			N		М	M	М	
Chromium	<0.9 mg/kg	TM181	14.1	5.23	7.97	3.59	6.18	5.3
			N	M	M	М	М	
Copper	<1.4 mg/kg	TM181	4.16	27.8	8.4	17	54.9	6.48
eeppe.	<1.4 mg/kg	TIWITOT						0.40
			N			M	М	
Lead	<0.7 mg/kg	TM181	2.97	83.2	24.6	50.8	87.5	4.79
			M	M	M	M	М	
Mercury	<0.1 mg/kg	TM181	<0.1	0.342	<0.1	<0.1	<0.1	<0.1
·			N		M	-0.1 M	M	0.1
NP-11	.0.0 "	THE						
Nickel	<0.2 mg/kg	TM181	5.43	10.7	6.61	7.86	12.4	5.62
			N	M	М	М	М	
Selenium	<1 mg/kg	TM181	<1	<1	<1	<1	<1	<1
	33		. #			. #	. #	
Vanadium	-00- "	THACA						44.0
Vanadium	<0.2 mg/kg	TM181	12.6	12.1	10	7.67	8.49	14.2
			#		#	#	#	
Zinc	<1.9 mg/kg	TM181	17.3	47.8	38	59.7	143	20
			Ν		М	М	М	
Boron, water soluble	<1 mg/kg	TM222	<1	<1	<1	<1	1.03	<1
Boron, water soluble	<i kg<="" mg="" td=""><td>1111222</td><td></td><td></td><td></td><td></td><td></td><td>51</td></i>	1111222						51
			N	M	М	М	М	
		I T					T T	
		+ +						
		+ +						
				1				
							I	

Report Number: 618670 Location: Rhos Street School Ruthin

Superseded Report:

Client R								 	
Results Legend # ISO17025 accredited.	Cu	stomer Sample Ref.	WS10		WS11				
M mCERTS accredited. aq Aqueous / settled sample.									
diss.filt Dissolved / filtered sample.		Depth (m)	0.10 - 0.30		0.40 - 0.60				
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for		Sample Type	Soil/Solid (S)		Soil/Solid (S)				
accreditation status.		Date Sampled	18/10/2021		18/10/2021				
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual		Sample Time Date Received	19/10/2021		19/10/2021				
compounds within samples aren't corrected for the	ne	SDG Ref	211019-86		211019-86				
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	25179016		25179017				
1-4+§@ Sample deviation (see appendix)		AGS Reference							
Component	LOD/Units	Method							
Moisture Content Ratio (% of as	%	PM024	0		7.9				
received sample)	,-								
Dhanal	10.01	TM000 (0)	-0.04		-0.01				
Phenol	<0.01 mg/kg	TM062 (S)	<0.01		<0.01				
				М		М			
Cresols	<0.01 mg/kg	TM062 (S)	<0.01		<0.01				
				М		М			
Xylenols	<0.015	TM062 (S)	<0.015		<0.015				
Aylenois		11002 (3)	<0.015		<0.015				
	mg/kg			М		М			
Phenols, Total Detected monohydric	< 0.035	TM062 (S)	< 0.035		< 0.035				
	mg/kg			М		М			
Soil Organic Matter (SOM)	< 0.35 %	TM132	6.34		0.841				1
	-0.00 /0	TWITUE	0.04	μ	0.041	щ			
	<u> </u>			#		#	l – – – – – – – – – – – – – – – – – – –		
ρΗ	1 pH Units	TM133	7.67		7.81				
	1			М		Μ			1
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6		<0.6				
. ,			-0.0	#	-0.0	щ			1
				#		#	├ ───		
Cyanide, Free	<1 mg/kg	TM153	<1		<1				
				М		Μ			
TPH >C21-C40	<10 mg/kg	TM154	58.2		21.1				
		This	00.0		04.4		<u>├</u>		
TPH >C6-C40	<10 mg/kg	TM154	68.2		24.1				
TPH >C6-C10	<10 mg/kg	TM154	<10		<10				
TPH >C10-21	110	TM154	<10		<10				
IFH 2010-21	<10 mg/kg	11/1104	<10		<10				
Chromium, Trivalent	<0.9 mg/kg	TM181	5.71		2.66				
Arsenic	<0.6 mg/kg	TM181	8.25		2.2				
	<0.0 mg/kg	TIVITOT	0.25		2.2				
				М		М			
Beryllium	<0.01 mg/kg	TM181	0.765		0.178				
				М		М			
Cadmium	<0.02 mg/kg	TM181	0.301		0.106				
				М		М			
		-	/	IVI		IVI			
Chromium	<0.9 mg/kg	TM181	5.71		2.66				
				М		М			
Copper	<1.4 mg/kg	TM181	24		11.6				
				М		М			
Lead	<0.7 mg/kg	TM181	78.8		23.6	141			+
Loau	~∪./ mg/кg	11/1101	/0.ŏ		23.0	• •			
	L			М		М			L
Mercury	<0.1 mg/kg	TM181	0.114		<0.1				
				м		М			
Nickel	<0.2 mg/kg	TM181	13.8		3.66				1
	-0.2 mg/kg	TWITO I	10.0	M	5.00				
	ļ	└── ↓		М		М	ļ	 	
Selenium	<1 mg/kg	TM181	<1		<1				
				#		#			
Vanadium	<0.2 mg/kg	TM181	13.1		5.33				
	0.2 mg/ng		10.1	#	0.00	#			
7:	.4.0	Thursd		#		#	<u>↓ </u>	 <u> </u>	
Zinc	<1.9 mg/kg	TM181	71.1		17.3				
				М		Μ			
Boron, water soluble	<1 mg/kg	TM222	<1		<1				
				м		М			1
		┝───┼				141	<u>∤</u>		t
									L
		[
									1
									1
		ļļ					ļ		
									1
							ļ		
		[
	1								1

SDG: 211019-86

CERTIFICATE OF ANALYSIS

Report Number: 618670 Location: Rhos Street School Ruthin Superseded Report:

(ALS)Client Re								
PAH by GCMS Results Legend	Cu	stomer Sample Ref.	WS1	WS3	WS4	WS5	WS8	WS9
# ISO17025 accredited. M mCERTS accredited.	Cu	istomer sample Rei.	WS1	WS3	WS4	WS5	WS8	WS9
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.70	0.50 - 0.80	0.40 - 0.60	0.20 - 0.40	0.40 - 0.60	0.10 - 0.20
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)					
 Subcontracted - refer to subcontractor report for accreditation status. 		Date Sampled	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual		Sample Time						
compounds within samples aren't corrected for the		Date Received SDG Ref	19/10/2021 211019-86	19/10/2021 211019-86	19/10/2021 211019-86	19/10/2021 211019-86	19/10/2021 211019-86	19/10/2021 211019-86
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	25179009	25179010	25179011	25179012	25179013	25179014
1-4+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units	Method						
Naphthalene-d8 % recovery**	%	TM218	89.7	88.7	89.2	92	89.7	81.2
Acenaphthene-d10 % recovery**	%	TM218	89.7	89.7	91.8	93.2	91.2	87.4
Phenanthrene-d10 % recovery**	%	TM218	93.5	91.3	94.1	96.7	92.9	91
Chrysene-d12 % recovery**	%	TM218	98.8	89.1	98	95.4	93.1	105
Perylene-d12 % recovery**	%		106	90.3			93.6	74.8
· · ·		TM218			94.5	94.8		
Naphthalene	<9 µg/kg	TM218	<9 M			38.1 M	27.7 M	7360
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	632 M	189 M	<12 M	8560
Acenaphthene	<8 µg/kg	TM218	<8 M	<8 M	150 M	164 M	80.1 M	66200
Fluorene	<10 µg/kg	TM218	<10 M	<10	461	217 M	80.9 M	57800
Phenanthrene	<15 µg/kg	TM218	<15 M	<15	5520	1980 M	438 M	320000
Anthracene	<16 µg/kg	TM218	<16 M	<16	1610	577 M	152 M	124000
Fluoranthene	<17 µg/kg	TM218	<17 M	<17	8730	2220 M	509 M	486000
Pyrene	<15 µg/kg	TM218	<15 M	<15	7280	м 1740 М	421 M	386000
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14	3740	935 M	208 M	170000
Chrysene	<10 µg/kg	TM218	<10 M	<10	3460	873 M	186 M	151000
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15	3860	997 M	215 M	152000
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14	1610	376	85.1 M	64300
Benzo(a)pyrene	<15 µg/kg	TM218	<15 M	<15	3290	733 M	178 M	122000
ndeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18	<18	2310	474	118 M	75700
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	M <23 M	<23	344	M 84.5 M	<23 M	12400
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24 M	<24	1940	381 M	99.6 M	51900
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	<118	<118	44900	12000	2800	2250000
				+				

SDG: 211019-86

CERTIFICATE OF ANALYSIS Report Number: 618670

Superseded Report: Location: Rhos Street School Ruthin

Client	SDG: 211019-8 Ref.:	36		Report Number: Location:	: 6 : F	618670 Rhos Street School Ruthin	Supersedeo	d Report:	
PAH by GCMS Results Legend						,			
# ISO17025 accredited.	Cu	istomer Sample Ref.	WS10	WS11					
M mCERTS accredited. aq Aqueous / settled sample.		Death (m)		0.40, 0.00					
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.10 - 0.30 Soil/Solid (S)	0.40 - 0.60 Soil/Solid (S)					
 Subcontracted - refer to subcontractor report fe accreditation status. 	or	Date Sampled	18/10/2021	18/10/2021					
** % recovery of the surrogate standard to check efficiency of the method. The results of individu	the	Sample Time	19/10/2021						
compounds within samples aren't corrected for		Date Received SDG Ref	211019-86	19/10/2021 211019-86					
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	25179016	25179017					
1-4+§@ Sample deviation (see appendix)		AGS Reference							
Component	LOD/Units	Method							
laphthalene-d8 % recovery**	%	TM218	88.9	90.3					
cenaphthene-d10 % recovery**	%	TM218	89.5	90.8	_				
Phenanthrene-d10 % recovery**	%	TM218	91.2	93.7	_				
Chrysene-d12 % recovery**	%	TM218	87.7	91.6	_				
Perylene-d12 % recovery**	%	TM218	84.2	92.8	_				
Vaphthalene	<9 µg/kg	TM218	<9	<9	_				
Acenaphthylene	<12 µg/kg	TM218	<12	M <12	М				
Acenaphthene	<8 µg/kg	TM218	<8	M <8	М				
				м	М				
Fluorene	<10 µg/kg	TM218			М				
Phenanthrene	<15 µg/kg	TM218			М				
Anthracene	<16 µg/kg	TM218	<16	<16 M	М				
luoranthene	<17 µg/kg	TM218	63	<17 M	М				
yrene	<15 µg/kg	TM218	62.5	<15 M	м				
Benz(a)anthracene	<14 µg/kg	TM218	45	<14 M	м				
Chrysene	<10 µg/kg	TM218	52	<10 M	м				
Benzo(b)fluoranthene	<15 µg/kg	TM218	77.4	<15 M	М				
Benzo(k)fluoranthene	<14 µg/kg	TM218	27.7	<14 M	М				
Benzo(a)pyrene	<15 µg/kg	TM218	56.7	<15	М				
ndeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	50.2	<18 M	М				
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23	<23 M	М				
lenzo(g,h,i)perylene	<24 µg/kg	TM218	48.9	<24 M	м				
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	516	<118					
					-				
		L							

Location: Rhos Street School Ruthin

Superseded Report:

Asbestos Identification - Solid Samples

Results Legend ISO17025 accredited. mCERTS accredited. Subcontracted test. М

M mCERTS ac * Subcontract		Date of Analysis	Analysed By	Comments	Amosite	Chrysotile	Crocidolite	Fibrous	Fibrous	Fibrous	Non-Asbestos
	ach confirmed				(Brown) Asbestos	(White) Asbestos	(Blue) Asbestos	Actinolite	Anthophyllite	Tremolite	Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS1 0.50 - 0.70 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179009 TM048	26/10/2021	Marcin Magdziarek	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS3 0.50 - 0.80 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179010 TM048	26/10/2021	Marcin Magdziarek	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	WS4 0.40 - 0.60 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179011 TM048	26/10/2021	Marcin Magdziarek	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS5 0.20 - 0.40 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179012 TM048	26/10/2021	Marcin Magdziarek	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS8 0.40 - 0.60 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179013 TM048	26/10/2021	Emily Anderton	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	WS9 0.10 - 0.20 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179014 TM048	26/10/2021	Agnieszka Chelmowska	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	WS10 0.10 - 0.30 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179016 TM048	26/10/2021	Emily Anderton	-	Not Detected (#)	Not Detected					
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	WS11 0.40 - 0.60 SOLID 18/10/2021 00:00:00 19/10/2021 10:15:00 211019-86 25179017 TM048	26/10/2021	Emily Anderton	-	Not Detected (#)	Not Detected					

SDG: 211019-86 Client Ref.:

Report Number: 618670

Superseded Report:

Validated

Location: Rhos Street School Ruthin

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser
TM154	In - house Method	Determination of Petroleum Hydrocarbons by EZ Flash GC-FID in the Carbon range C6- C40
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:Soil) by ICP OES.

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

 Report Number:
 618670

 Location:
 Rhos Street School Ruthin

Superseded Report:

Test Completion Dates

Lab Sample No(s)	25179009	25179010	25179011	25179012	25179013	25179014	25179016	25179017
Customer Sample Ref.	WS1	WS3	WS4	WS5	WS8	WS9	WS10	WS11
AGS Ref.								
Depth	0.50 - 0.70	0.50 - 0.80	0.40 - 0.60	0.20 - 0.40	0.40 - 0.60	0.10 - 0.20	0.10 - 0.30	0.40 - 0.60
Туре	Soil/Solid (S)							
Asbestos ID in Solid Samples	26-Oct-2021							
Boron Water Soluble	26-Oct-2021	25-Oct-2021						
Chromium III	26-Oct-2021							
Cyanide Comp/Free/Total/Thiocyanate	25-Oct-2021							
Hexavalent Chromium (s)	25-Oct-2021	25-Oct-2021	25-Oct-2021	25-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021
Metals in solid samples by OES	26-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021	25-Oct-2021	26-Oct-2021
PAH by GCMS	22-Oct-2021							
pH	25-Oct-2021							
Phenols by HPLC (S)	26-Oct-2021							
Sample description	21-Oct-2021							
Total Organic Carbon	26-Oct-2021	26-Oct-2021	26-Oct-2021	26-Oct-2021	25-Oct-2021	26-Oct-2021	25-Oct-2021	26-Oct-2021
TPH c6-40 Value of soil	25-Oct-2021							

16666

211019-86 Rhos Street School Ruthin Client Reference: Order Number: Report Number: Superseded Report: 618670

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio di dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX 7

-GAC Assessment

Residential with pla	ant uptake (1%SOM)					
eneric Criterion (mg/kg)	Basis for Generic Criterion	No. Samples	Min. (mg/kg)	Max. (mg/kg)	No. Samples Equal to, or Greater Than, Generic Criterion	US95 (mg/kg)
37	C4SL	8	1.75	6.92	0	7.14
51	LQM/CIEH + CLEA 1.06	8	0.113	0.765	0	0.73
290	LQM/CIEH + CLEA 1.06	8	1	1.03	0	1.02
26	C4SL	8	0.106	0.4	0	0.42
630	LQM/CIEH + CLEA 1.06	8	2.66	14.1	0	11.77
21	C4SL	8	0.6	0.6	0	0.60
2300	LQM/CIEH + CLEA 1.06	8	4.16	54.9	0	44.95
200	C4SL	8	2.97	87.5	0	98.87
170	SGV report + CLEA 1.06	8	0.1	0.342	0	0.26
130	SGV report + CLEA 1.06	8	3.66	13.8	0	13.87
350	SGV report + CLEA 1.06	8	1	1	0	1.00
74	LQM/CIEH + CLEA 1.06	8	5.33	14.2	0	15.18
3700	LQM/CIEH + CLEA 1.06	8	17.3	143	0	116.52
750	Caulmert + CLEA 1.06	0	0	0	0	#DIV/0!
180	SGV report + CLEA 1.06	8	0.035	0.035	0	0.04
210	LQM/CIEH + CLEA 1.06	8	0.008	66.2	0	44.37
170	LQM/CIEH + CLEA 1.06	8	0.012	8.56	0	5.79
2300	LQM/CIEH + CLEA 1.06	8	0.016	124	0	83.20
3.1	LQM/CIEH + CLEA 1.06	8	0.014	170	2	114.16
5	C4SL	8	0.015	122	1	81.97
5.6	LQM/CIEH + CLEA 1.06	8	0.015	152	1	102.11
44	LQM/CIEH + CLEA 1.06	8	0.024	51.9	1	34.91
8.5	LQM/CIEH + CLEA 1.06	8	0.014	64.3	1	43.19
6	LQM/CIEH + CLEA 1.06	8	0.01	151	1	101.41
0.76	LQM/CIEH + CLEA 1.06	8	0.023	12.4	1	8.34
260	LQM/CIEH + CLEA 1.06	8	0.017	486	1	326.21
160	LQM/CIEH + CLEA 1.06	8	0.01	57.8	0	38.76
3.2	LQM/CIEH + CLEA 1.06	8	0.018	75.7	1	50.88
1.5	LQM/CIEH + CLEA 1.06	8	0.009	7.36	1	4.94
92	LQM/CIEH + CLEA 1.06	8	0.015	320	1	214.80
560	LQM/CIEH + CLEA 1.06	8	0.015	386	0	259.11
eneric Criterion (mg/kg)	Basis for Generic Criterion	No. Samples	Min. (mg/kg)	Max. (mg/kg)	No. Samples Equal to, or Greater Than, Generic	US95 (mg/kg)
050		0	4.75	0.00	Criterion	
250	MAFF 1998	8	1.75	6.92	0	7.14
3	New Zealand timber 1997	8	1	1.03	0	1.02
400	MAFF 1998 (Cr(T))	8	2.66	14.1	0	11.77
						0.60
			-		-	44.95
		-			-	<u>13.87</u> 116.52
25 135 75 300		ICRCL 70/90 1990 BS3882 2007 BS3882 2007 BS3882 2007	ICRCL 70/90 1990 8 BS3882 2007 8 BS3882 2007 8	ICRCL 70/90 1990 8 0.6 BS3882 2007 8 4.16 BS3882 2007 8 3.66	ICRCL 70/90 1990 8 0.6 0.6 BS3882 2007 8 4.16 54.9 BS3882 2007 8 3.66 13.8	ICRCL 70/90 1990 8 0.6 0.6 0 BS3882 2007 8 4.16 54.9 0 BS3882 2007 8 3.66 13.8 0

Human Health	Residential with pla	ant uptake (1%SOM)	WS9 0.1-0.2m removed				
Chemical of Potential Concern	Generic Criterion (mg/kg)	Basis for Generic Criterion	No. Samples	Min. (mg/kg)	Max. (mg/kg)	No. Samples Equal to, or Greater Than, Generic Criterion	US95 (mg/kg)
Arsenic	37	C4SL	7	2.66	6.92	0	7.12
Beryllium	51	LQM/CIEH + CLEA 1.06	7	0.178	0.765	0	0.77
Boron	290	LQM/CIEH + CLEA 1.06	7	1	1.03	0	1.02
Cadmium	26	C4SL	7	0.106	0.4	0	0.45
Chromium (III)	630	LQM/CIEH + CLEA 1.06	7	2.66	14.1	0	12.71
Chromium (VI)	21	C4SL	7	0.6	0.6	0	0.60
Copper	2300	LQM/CIEH + CLEA 1.06	7	4.16	54.9	0	49.27
Lead	200	C4SL	7	2.97	87.5	0	106.06
Mercury, inorganic	170	SGV report + CLEA 1.06	7	0.1	0.342	0	0.29
Nickel	130	SGV report + CLEA 1.06	7	3.66	13.8	0	14.83
Selenium	350	SGV report + CLEA 1.06	7	1	1	0	1.00
Vanadium	74	LQM/CIEH + CLEA 1.06	7	5.33	13.1	0	14.67
Zinc	3700	LQM/CIEH + CLEA 1.06	7	17.3	143	0	127.50
Cyanide (free)	750	Caulmert + CLEA 1.06	0	0	0	0	#DIV/0!
Phenol (total)	180	SGV report + CLEA 1.06	7	0.035	0.035	0	0.04
Acenaphthene	210	LQM/CIEH + CLEA 1.06	7	0.008	0.164	0	0.18
Acenaphthylene	170	LQM/CIEH + CLEA 1.06	7	0.012	0.632	0	0.51
Anthracene	2300	LQM/CIEH + CLEA 1.06	7	0.016	1.61	0	1.32
Benz(a)anthracene	3.1	LQM/CIEH + CLEA 1.06	7	0.014	3.74	1	2.98
Benzo(a)pyrene	5	C4SL	7	0.015	3.29	0	2.60
Benzo(b)fluoranthene	5.6	LQM/CIEH + CLEA 1.06	7	0.015	3.86	0	3.08
Benzo(ghi)perylene	44	LQM/CIEH + CLEA 1.06	7	0.024	1.94	0	1.53
Benzo(k)fluoranthene	8.5	LQM/CIEH + CLEA 1.06	7	0.014	1.61	0	1.28
Chrysene	6	LQM/CIEH + CLEA 1.06	7	0.01	3.46	0	2.76
Dibenz(a,h)anthracene	0.76	LQM/CIEH + CLEA 1.06	7	0.023	0.344	0	0.27
Fluoranthene	260	LQM/CIEH + CLEA 1.06	7	0.017	8.73	0	6.96
Fluorene	160	LQM/CIEH + CLEA 1.06	7	0.01	0.461	0	0.40
Indeno(1,2,3,cd)pyrene	3.2	LQM/CIEH + CLEA 1.06	7	0.018	2.31	0	1.82
Naphthalene	1.5	LQM/CIEH + CLEA 1.06	7	0.009	0.045	0	0.05
Phenanthrene	92	LQM/CIEH + CLEA 1.06	7	0.015	5.52	0	4.54
Pyrene	560	LQM/CIEH + CLEA 1.06	7	0.015	7.28	0	5.79
Plant Life							
Chemical of Potential	Generic Criterion (mg/kg)	Basis for Generic	No. Samples	Min. (mg/kg)	Max. (mg/kg)	No. Samples Equal to, or	US95 (mg/kg)
Concern		Criterion				Greater Than, Generic Criterion	
Arsenic	250	MAFF 1998	7	2.66	6.92	0	7.12
Boron	3	New Zealand timber 1997	7	1	1.03	0	1.02
Chromium (III)	400	MAFF 1998 (Cr(T))	7	2.66	14.1	0	12.71
Chromium (VI)	25	ICRCL 70/90 1990	7	0.6	0.6	0	0.60
Copper	135	BS3882 2007	7	4.16	54.9	0	49.27
Nickel	75	BS3882 2007	7	3.66	13.8	0	14.83
Zinc	300	BS3882 2007	7	17.3	143	0	127.50

Registered Office: InTec, Parc Menai, Bangor, Gwynedd, LL57 4FG Tel: 01248 672666 Fax: 01248 672601 Email: contact@caulmert.com Web: www.caulmert.com